

Butler University

# Implementing Quantum Random Walks in Two-Dimensions with Application to Diffusion-Limited Aggregation 

Colin Frederick Sanberg<br>Butler University

Follow this and additional works at: https://digitalcommons.butler.edu/ugtheses
Part of the Physics Commons

## Recommended Citation

Sanberg, Colin Frederick, "Implementing Quantum Random Walks in Two-Dimensions with Application to Diffusion-Limited Aggregation" (2007). Undergraduate Honors Thesis Collection. 14.
https://digitalcommons.butler.edu/ugtheses/14

This Thesis is brought to you for free and open access by the Undergraduate Scholarship at Digital Commons @ Butler University. It has been accepted for inclusion in Undergraduate Honors Thesis Collection by an authorized administrator of Digital Commons @ Butler University. For more information, please contact digitalscholarship@butler.edu.

## BUTLER UNIVERSITY HONORS PROGRAM

Honors Thesis Certification

Please type all information in this section:

| Applicant | $\frac{\text { Colin Frederick Sanberg }}{\text { (Name as nis to appear on diploma) }}$ |
| :--- | :--- |
| Thesis title | Implementing Quantum Random Walks in Two-Dimensions |
|  | with Application to Diffusion-Limited Aggregation |

intended date of commencement May 12, 2007


For Honors Program use:
Level of Honors conferred: University
Cum Laude
Departmental $\qquad$
$\qquad$
$\qquad$

# Implementing Quantum Random Walks in Two-Dimensions with Application to 

 Diffusion-Limited AggregationA Thesis<br>Presented to the Department of Physics \& Astronomy College of Liberal Arts and Sciences and The Honors Program of Butler University<br>In Partial Fulfillment<br>of the Requirements for Graduation Honors

Colin Frederick Sanberg
April 20, 2007

## Table of Contents

Abstract ..... 3
Introduction ..... 4
Methodology ..... 7
Results ..... 14
Conclusions ..... 20
Appendix of Tables \& Figures ..... 22
First Quantum Model Program Code ${ }^{*}$ ..... 26
First Classical Model Program Code ..... 33
Second Quantum Model Program Code ..... 40
Second Classical Model Program Code ..... 47
References ..... 52

[^0]
#### Abstract

This study simulates random movement and aggregation of particles in two-dimensional space based upon both quantum and classical mechanics. Using an original computer program to perform the calculations, the objective is to compare how quantum effects influence the random movement of a particle in comparison to the classical random movement. These effects are further studied by analyzing how the amassing of particles around a "seed" is affected by the differences in the random movement. Using the classical models that were generated as the basis of comparison, the initial results show that the quantum model aggregate grows at a slower rate than the classical case. Also, the quantum model grows in a more amorphous manner than the clear branching of the classical example. In an effort to more accurately simulate the behavior of the probability function as it encounters other particles, both the quantum and classical models were adjusted. This yielded a quantum aggregation that developed more similarly than the classical model. The primary difference in the quantum model was a noticeable lack of symmetry as the particles amassed around the seeded particles. It is possible that this iteration of the quantum model develops more rapidly then the classical model, though more simulations are needed to further test this. The effect other particles have on the development of the probability function also needs to be further examined to ensure that it is being modeled as accurately as possible.


## Introduction

Since its discovery and subsequent development, quantum mechanics has profoundly changed how many scientists view the natural world, particularly at the microscopic level. One of the central tenants of quantum mechanics is the superposition of states, which in essence acts as a superposition of realities for individual particles to exist in. To further explain how this is possible, a tiny particle such as an electron exhibits behavior similar to both a particle and a wave. Pioneered by scientists such as Niels Bohr and Louis Victor de Broglie, this wave-particle duality states that subatomic bodies exist in both states at the same time, and can therefore have the probability of existing in multiple places at the same instance. Standing waves provide the best model for this seeming contradiction. A standing wave has the greatest amplitude at the central location between the two fixed nodes, which corresponds to the location where the particle has the greatest probability of being located when measured, but other amplitudes of lesser value exist between the wave nodes. The Heisenberg Uncertainty Principle states that the accuracy of measuring a particle's state, such as its instantaneous position or momentum, is limited so that the product of both values' standard deviations is equal to a constant, $\frac{h}{4 \pi}$, where $h$
is Planck's constant ${ }^{\dagger}$. Taking these two principles in combination, a particle has the probability of being in multiple locations at any particular moment in time until it is physically measured, the value of which is accurate only in relation to the measurement of the momentum.

[^1]The movement of a particle based upon its two-dimensional probability wave establishes one of the main focuses of this study. Given a particle's initial position, it has a certain probability to move to another location within a certain distance in a wave-like manner. As the wave moves further from the initial location, it spreads out. Therefore the particle has a higher probability of moving to a nearby location, but larger steps are not discounted, just more improbable. These probability values become factors during the random walk process.

Random walks, as the name implies, deal with the movement of an object wherein the location of each step is determined at random through some means. The simplest example of this is the movement of a particle along a line so that it can only move either to the left or to the right with each step. The flip of a coin randomly determines which way the particle moves. The two-dimensional analog of this idea is sometimes referred to as a "drunken walk" because each small step is taken in a random direction, with one coin dictating forward or backward movement and another choosing left or right. This is a prime example of a classical random walk because the movement is based upon Newtonian mechanics, which is demonstrated in the fact that the state of the particle does not affect how its movement progresses. A quantum random walk (QRW) would be similar in nature; however the intermal state of the particle would influence the outcome of the coin flip as well as the probability of the location for each step. Moreover, the particle would occupy different locations at the same time in a wave-like manner. Cuurently, quantum random walks are a relatively new field of study, as stated by Julia Kempe (2003). Existing research in this area focuses primarily in modeling quantum
random walks in one-dimensional space, with higher dimensions limited to mostly theoretical description, which is seen in work done by Mackay et al (2002). Random walks equate 10 a random exploration, which can be used, for example, to sample or explore large data structures. They also form the basis for many computer algorithms, so that a significant difference between QRWs and classical random walks may lead to the development of more powerful algorithms.

Diffusion-limited aggregation (DLA) is a process in which randomly moving particles accumulate when they come in contact with a seed particle and, in time, with other amassed particles. This simple rule of motion leads to the formation of complex branching structures similar in nature to those found in the formation of snowflakes, trees, and coral reefs. These structures have self-similar patterns that repeat themselves at smaller and smaller scales, and are called fractals. Fractals are geometric figures that are said to have infinite detail, because as a fractal is divided into parts, each of the components has a shape and structure similar to the original image. The formation of these shapes via DLA is the other primary focus of this study. It aims to observe how a QRW affects fractal growth in comparison to a classical random walk. This visualization will help understand how random movement of a particle based upon quantum mechanics differs from classical movement.

## Methodology

The primary basis for the calculation of two-dimensional QRWs was put forth in the paper by Mackay et al (2003). A QRW is obtained by attributing an internal state to the particle that will undergo the random movement. Looking first at a one-dimensional walk for this study, the particle will have a spin-1/2 system with an internal Hilbert space $\mathrm{H}_{\mathrm{iat}}=$ $\mathrm{H}_{2}$, with basis state $\left|\varepsilon_{1}\right\rangle=| \pm\rangle$. For two-dimensional space, the Hilbert space gets extrapolated to $\mathrm{H}_{\mathrm{int}}=\mathrm{H}_{2} \otimes \mathrm{H}_{2}$, with basis states $\left|\varepsilon_{1} \varepsilon_{2}\right\rangle=\left|\varepsilon_{1}\right\rangle \otimes\left|\varepsilon_{2}\right\rangle$, where $\left|\varepsilon_{1}\right\rangle=| \pm\rangle$. This means that the particle can have either a positive or negative spin to it in either the first or second quantum bit (or qubit). The positive or negative value in $\varepsilon_{1}$ or $\varepsilon_{2}$ will determine if the particle will move positively or negatively in its respective dimension, meaning four resultant directions of motion. The spatial state of a two-dimensional lattice is denoted by $H_{\text {spaual }}$ such that the Hilbert space is defined by the basis states $|i j\rangle=|i\rangle \otimes|j\rangle$, where $i$ and $j$ are both integers that define the location of the particle in two-dimensional discrete space. The total state of the particle is therefore described by a state

$$
\mathrm{H}_{\uparrow}=\mathrm{H}_{\text {spatial }} \otimes \mathrm{H}_{\text {int }} \ldots(1)
$$

To simulate the coin flip that determines particle movement, two separate unitary operators are used to first transform the internal state into a superposition of multiple states and then select the movement of the particle based upon the internal state. The Hadamard transformation is the first operator. For a one-dimensional QRW, the Hadamard transformation is of the form

$$
\mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1  \tag{2}\\
1 & -1
\end{array}\right) \ldots
$$

Extrapolating this for two-dimensional QRWs yields

$$
\mathbf{H}_{2}=\mathbf{H} \otimes \mathbf{H}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1  \tag{3}\\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

This transformation acts solely on the internal state of the particle. The internal states created by a two-dimensional system and their resulting superpositions are detailed below in Table 1.

| Internal <br> State | Shorthand <br> Label | Superposition |
| :---: | :---: | :---: |
| $\|++\rangle$ | 1 | $\left[\frac{1}{2}(\|++\rangle+\|+-\rangle+\|-\rangle\rangle+\|-+\rangle\right\rangle$ |
| +-$\rangle$ | 2 | $\frac{1}{2}(\|++\rangle-\|+-\rangle+\|--\rangle-\|-+\rangle)$ |
| $\|--\rangle$ | 3 | $\frac{1}{2}(\|++\rangle+\|+-\rangle-\|--\rangle-\|-+\rangle)$ |
| $[-+\rangle$ | 4 | $\frac{1}{2}(\|++\rangle-\|+-\rangle-\|--\rangle+\|-+\rangle)$ |

Table 1: Internal States and Their Post-Hadamard Superpositions

After applying the Hadamard transformation to the particle, a unitary operator, $\mathbf{F}$, is then utilized to move the position of the particle based upon its intemal state. The $\mathbf{F}$ is defined as

$$
\begin{align*}
& \mathbf{F}(|i, j\rangle \otimes|++\rangle)=|i, j+1\rangle \otimes|++\rangle \\
& \mathbf{F}(|i, j\rangle \otimes|+-\rangle\rangle=|i+1, j\rangle \otimes|+-\rangle \\
& \mathbf{F}(|i, j\rangle \otimes|--\rangle)=|i, j-1\rangle \otimes|--\rangle  \tag{4}\\
& \mathbf{F}(|i, j\rangle \otimes|-+\rangle)=|i-1, j\rangle \otimes|-+\rangle
\end{align*}
$$

Thus, for internal state $|++\rangle$ the particle moves one space up, for $|+-\rangle$ it moves to the right, down for $|--\rangle$, and to the left for internal state $|-+\rangle$. It should be noted that these movements are assigned for each of the four possible internal state combinations rather than simply using one qubit value for movement in the x -direction and one for movement in the $y$-direction. This was done to have the particle move either vertically or horizontally each time rather than always in one of four diagonal directions. In addition, the $\mathbf{F}$ operator does not alter the internal state of the particle, but rather transforms the superposition state into a superposition state of a particle that has moved in one of the four cardinal directions. The two operators are used in this alternating manner each iteration, causing the spatial and internal degrees of freedom to become entangled.

These calculations were performed using original FORTRAN code that was run on a UNIX-based computer. The development of the code occurred in stages. After writing an jnitial program to simulate the QRW, it was modified to simulate a classical random walk. This allowed for generation of a basis to compare the QRW to. Upon fine-tuning the classical walk program, the quantum model program was further amended.

The particle was simulated by having a value of one at a location in an empty threedimensional matrix, the first two coordinates defining the location and the third location defining the internal state. For example, a value of one at location $(9,13,3)$ meant that a particle located at $x$-coordinate 9 and $y$-coordinate 13 had an internal state of $|--\rangle$. The starting location of the particle is selected using a random number generator. The generator selects a number between zero and one, which is then multiplied by the
maximum location value of the matrix (in a $99 \times 99$ matrix, the random number is multiplied by 99) and then rounded to the nearest integer. The particles always begin with an internal state of $|++\rangle$. After the initial location is selected, the Hadamard and $\mathbf{F}$ operators are performed in an alternating manner on the location matrix. As the operators progress through the individual matrix elements, the changes they enact are reflected in a secondary location matrix so as to not influence the calculations being performed on the initial matrix. Once the operator has acted upon the whole matrix, it is set equal to the secondary matrix, which is then reset to zero. This is necessary because the operators are dependent upon the values in the locations at the same time they are changing the values of adjacent locations so as to simulate the propagation of the probability wave. The changes are made in the secondary matrix so as to not affect the current iteration of the operations.

To calculate the probability of a particle selecting a location, the square of the values in each state are summed for a given location. After $n$ iterations of alternately applying the (wo operators, the particle is in an entangled state $\left|\Psi_{n}\right\rangle \in H_{r}$, so the probability that it is found in location ( $i, \mathrm{j}$ ) is given by the equation

$$
\begin{align*}
P_{1}= & \mid\left\langle\left.\left\langle i, j \mid \otimes\langle++\mid\rangle \Psi_{n}\right\rangle\right|^{2}+\right|\left(\left.\left\langle i, j \mid \otimes\langle+-\mid\rangle \Psi_{n}\right\rangle\right|^{2}\right. \\
& +\mid\left.\langle\langle i, j| \otimes\langle--|)\left|\Psi_{n}\right\rangle\right|^{2}+\mid\left(\left.\left\langle i, j \mid \otimes\langle-+\mid\rangle \Psi_{n}\right\rangle\right|^{2}\right. \tag{5}
\end{align*}
$$

Although the internal state of the particle influences how its probability of relocation develops, it is not important for the actual selection of the location. The probability values are then stored in another matrix with values corresponding to their respective positions in the location matrix. Summing all the values in the probability matrix checks
that the total probability of the system remains at one, ensuring that the particle must go somewhere. Also, as the probability wave reaches the edges of the matrix, it wraps itself around to the other side, creating a sort of miniature globe that it walks over. A particle in the upper most location that will have a probability of moving upwards despite no place to go has that probability transferred to the location at the bottom of that same column.

The random selection of the location is done by taking the probability matrix and making each element equal to the sum of the elements up to and including it. A random number is generated, and the first element encountered to be greater than the random number becomes the chosen location for the particle. Consider a $3 \times 3$ probability matrix with particle located in the center having given probabilities of moving to the surrounding locations:

$$
[\mathbf{P}]=\left[\begin{array}{lll}
0.05 & 0.20 & 0.05 \\
0.20 & 0.00 & 0.20 \\
0.05 & 0.20 & 0.05
\end{array}\right]
$$

The probability matrix then becomes

$$
[\mathbf{P}]=\left[\begin{array}{lll}
0.05 & 0.25 & 0.30 \\
0.50 & 0.50 & 0.70 \\
0.75 & 0.95 & 1.00
\end{array}\right]
$$

Looking at the elements row by row, a randomly generated number of 0.67953 would first encounter an element greater than itself at $\mathbf{P}(3,2)$. The coordinate $(3,2)$ would then become the location selected for the particles random movement.

Since applying the QRW to diffusion-limited aggregation (DLA) is the ultimate goal, the random selection of locations is taken a step further DLA looks at how groups form as randomly moving particles cluster together. The program emphasizes this by initializing the clustering with a "seed" in the matrix that maintains the final selected locations. A group of locations are selected at the beginning of the program a $6 \times 6$ square located just off the center of the selected location matrix. If the location randomly selected does not lay adjacent to a location that is already occupied, then the particle is discarded and a new particle begins the process all over again. Initially, these particles will be encountering only the seeded locations, but over time the amassed particles take on their own shape.

For the classical case, this system all remains the same, with the exception that the $\mathbf{H}$ and F operators are only applied once to the particle before choosing a new location, giving it a 0.25 probability of moving to each of the four surrounding locations: up, right, down, and left. The primary difference between the models is that the particle is allowed to take a designated number of steps so that it has the opportunity to aggregate with the seeded particles. After so many steps have been taken, in this case 1,000 , without coming in contact with other particles, it is discarded and another particle begins the process again. As with the probability calculations, the matrix space wraps in on itself. Therefore, if a particle is at the edge of the matrix and wants to move to a location not defined in the matrix, it finds itself on the other side.

After the initial results, both the quantum and the classical programs were modified to change how the probability function behaves when it encounters other particles, as well
as slightly increase the chances of particles encountering each the initial seed. Instead of randomly beginning anywhere within the matrix, the particles randomly appear on a circular boundary that is defined around the perimeter of the matrix. This is done to make the initial distance from the aggregate the same for all particles, only varying their position as a function an angle and not a radial distance.

In the previous model for both the classical and quantum cases, as the probability function developed it reflected off of any of the aggregate that it encountered. This caused the probability to cluster together in particular areas in between arms of the amassed particles. In an effort to counteract this, the second iteration of the model would allow for the selection of a location once the probability function encounters another particle. If the randomly selected location was not immediately next to that particle, the probability for the particle being in that specific location was set to zero and the other location probabilities were adjusted accordingly. This equates to taking a measurement and definitively finding that a particle was not located in the spot being examined, so the possibility of it being located in the other locations is increased just a little bit. Once this check is performed, the probability function is allowed to grow as before until it encounters another particle.

## Results

The initial iterations of the quantum and classical models yield visibly different trends in the aggregate growth. The particle clusters generated by the classical model display the beginnings of common fractal growth. The particles are extending from their respective seeds in a branching fashion.


Figure 1: Classical DLA with 1,000 Particles


Figure 2: Classical DLA with 1,000 Particles
Both Figure 1 and Figure 2 are consistent with the shapes generated from classical random walk DLA. These shapes, commonly referred to as Brownian trees, have fairly
evenly distributed branching in all directions around the central seed, which is located at the center of each of the growths. This supports that the classical model is working as it should by producing results consistent with established findings.

The data gathered from the quantum simulations show a greatly different pattern of growth. Simulations that allow $1,000,2,500$ and 5,000 individual particles a chance to aggregate all show clusters that do not branch of as dramatically as the classical case.


Figure 3: Quantum DLA with 1,000 Particles


Figure 4: Quantum DLA with 2,500 Particles


Figure 5: Quantum DLA with 5,000 Particles

Figures 3-5 each illustrate a model that grows in a more amorphous manner rather than classical simulation. This is promising, because it supports the fact that the quantum effects of the particle have a prevalent impact on how the particles move around and amass together. Also, the simulation that only runs 1,000 particles, the same amount as in the two classical simulations, shows that the quantum aggregation does not appear to happen as quickly as the in the classical case. However, it is possible that the different pattern of growth occurs because the probability function is getting confined in areas as it reflects of aggregated particles. This would cause a disproportionately high probability in certain areas which may not be consistent with how the behavior would naturally occur.

The second version of both models attempts to take this into account as described above and has yielded distinctly different results for the quantum model, though the classical model remains similar in nature to the expected out come.


Figure 6: Classic DLA with 4,000 Particles


Figure 7: Classic DLA with 4,000 Particles

The above results still display development similar to the expected Brownian trees, though the aggregate in Figure 6 does not have very symmetric growth. The aggregate has spread out so far that the circular perimeter where the particles begin is identifiable.

As the amassed particles approach closer to the starting location, the particles have a greater chance of attaching to the aggregate. Therefore, Figure 6 may not display the most favorable classical conditions. Figure 7, on the other hand, display results more consistent with those expected.

The quantum model results from the second iteration of the programs display development more similar to the classical model than in the previous model.


Figure 8: Quantum DLA with 4,000 Particles


Figure 9: Quantum DLA with 4,000 Particles

Figure 8 and Figure 9 show aggregates that are drastically more similar to the classical Brownian tree model. The thin branching that occurs rather than the amorphous growing that occurred in the previous quantum model suggests that the clustering of the probability function may have been a factor in the previous difference in the growth pattern. This may occur because as specific locations are discounted from having
particles located there, the probability function approaches a more classical model given enough steps develop. These quantum models also appear to grow at a rate comparable to the classical models in this iteration of the programs. All simulations simulated a total of 4,000 particles and yielded similar sized structures. However, if the first classical simulation (Figure 6) is to be considered somewhat of an anomaly for approaching the boundary, it could be considered that the quantum model grew more rapidly in comparison to the results seen in Figure 7. Another trend to note in these results is that both of the quantum models in the second round of simulations tend to grow downward rather than symmetrically around the seed. This is most likely due to the fact that as the probability function develops for a particle initially in the $|++\rangle$ state, it does not grow symmetrically about the central starting location. One way to counteract this in future study would be to randomly select the initial state of the particle as well as its location.

## Conclusions

Judging from the data obtained thus far, it can be seen that the quantum effects of the particle have the ability to play a significant role in influencing how the particles move randomly about in two-dimensional space. The degree of these effects is dependent upon the accuracy of the modeling of the quantum effects and the development of the probability function. In the preliminary batch of simulations, this difference in random movement in turn affects how the particles aggregate around the seed. The quantum models depict more centralized gathering of the particles. The amassed particles seen here do not appear to form in a traditional fractal-like manner, though this may be because it takes longer for the pattern to develop or emerge. It may also be due to the probability function growing disproportionately in certain areas as it reflects off the amassed particles. The simulation that run 5,000 particles already displays some branching, though they tend to favor the one side of the aggregate rather than developing symmetrically like the classical model. This is most likely due to the fact that the quantum locations are being selected via a probability wave that is spreading out from a randomly selected location and is effectively only being allowed to take one big step. The classical model allows the particle to take numerous small steps, in these simulations as many as 1000 , to come in contact with the seed and other particles. Also, the first set of quantum model results appear to grow at a slower rate than the classical models. This might imply that the random movement based on quantum mechanics is not as conducive to amassing of particles in this manner.

The second set of models display more similar trends, though more simulations will need to be run before any more concrete conclusions can be extrapolated. Both the classical
and quantum models develop at comparable rates, though if the first classical model is not indicative of the regular behavior, it is possible that the quantum model actually develops more quickly in this instance. Also, the quantum model is displaying a tendency to develop favoring one side of the seed rather than symmetrically about it. This is most likely do to the asymmetrical probability function which should be taken into account by randomly selecting the initial state of the particles. The bunching of the particles into amorphous growths appears to have been offset by the changes to the program, in turn displaying development much more similar to the classical model.

The differences between the classical and quantum models are clearly observed in these simulations, although those differences are dissimilar between the two models. For future study, the behavior of the probability function as it develops and comes into contact with other particles needs to be examined more closely to ensure that the model is simulated the actual behavior as accurately as possible. As this is better understood, the programs can be modified to represent the systems faithfully and provide more decisive conclusions on the difference between the quantum and classical models.

## Appendix of Tables \& Figures

| Internal <br> State | Shorthand <br> Label | Superposition |
| :---: | :---: | :---: |
| $\|++\rangle$ | 1 | $\left[\frac{1}{2}(\|++\rangle+\|+-\rangle+\|--\rangle+\|-+\rangle)\right.$ |
| $\|+-\rangle$ | 2 | $\frac{1}{2}(\|++\rangle-\|+-\rangle+\|--\rangle-\|-+\rangle)$ |
| $\|--\rangle$ | 3 | $\frac{1}{2}(\|++\rangle+\|+-\rangle-\|--\rangle-\|-+\rangle)$ |
| $\|-+\rangle$ | 4 | $\frac{1}{2}(\|++\rangle-\|+-\rangle-\|--\rangle+\|-+\rangle)$ |

Table A1: Internal States and Their Post-Hadamard Superpositions


Figure A1: Classical DLA with 1,000 Particles


Figure A2: Classical DLA with 1,000 Particles


Figure A3: Quantum DLA with 1,000 Particles


Figure A4: Quantum DLA with 2,500 Particles


Figure A5: Quantum DLA with 5,000 Particles


Figure A6: Classic DLA with 4,000 Particles


Figure A7: Classic DLA with 4,000 Particles


Figure A8: Quantum DLA with $\mathbf{4 , 0 0 0}$ Particles


Figure A9: Quantum DLA with 4,000 Particles

## First Quantum Model Program Code

PROGRAM quantum2

| c |  |
| :---: | :---: |
| C | PROJECTION |
| c |  |
| C | This program aims to simulate random movement |
| C | of a particle based upon quantum mechanics and |
| C | take into account the internal states of the particles. |
| C |  |
| C- |  |
| C |  |
| C | PARAMETERS |
| C |  |
| C | LOC $=$ LOCATION MATRIX |
| $C$ | STP = STEP NUMBER |
| c | BIIGSTEP $=$ NUMBER OF PARTICLES |
| C | STRMAX = MAXIMUM NUMBER OF ORERATOR ITERATIONS |
| C | SEED2 = SEED LOCATIONS |
| C | PROB $=$ PROBABILITY MATRIX |
| C | CHX $=$ CHOSEN LOCATION |
| C | SUM $=$ CHECK TO ENXURE THAT TOTAL PROBABILITY IS 1 |
| C | SUMT = USED IN CONJUNCTION WITH 'SUM' |
| C | NN = DEFINES MATRIX SIZE |
| C | STRT = DEFINES CENTER OF MATRIX |
| C | DLA $=$ MATRIX OF CHOSEN LOCATIONS |
| C | NEIGHBORS $=$ KEEPS TRACK OF LOACTIONS WITH NEIGHBORS |
| c | FLAG $=$ CHECKS FOR NEIGHBOR PARTICLES |
| $C$ |  |

```
    IMPLICIT REAL *8 (A-H,O-Z)
    INTEGER STP, SEED2,NN, DLA (99.99), BIGSTEP,II, JJ
    INTEGER NEIGHBORS (99,99)
    INTEGER SEED,IIp,IIm,JJp,JJm, FLAG, STPMAX
    REAL *8 PROB (99,99), CHX, SUM, LOC1 (99,99,4),\operatorname{LOC2}(99,99, 4)
    REAL *8 SUMT
    OPEN (4, FILE = 'quantumspot2.dat',STATUS= 'UNKNOWN')
```


$C$ SET DEFAULT PARAMETERS C

$\mathrm{ZERO}=0.0 \mathrm{DO}$
$\mathrm{ONE}=1.0 \mathrm{DO}$
SUM $=2 \mathrm{ERO}$
$\mathrm{NN}=99$
SEED2 $=47$
STP $=0$
BIGSTEP $=0$
STPMAX $=30$

C INITIALIZE RANDOM NUMBER GENERATOR C

SEED=TIME ( )
$C A L L=R A N D$ (SEED)

```
C-------------------------------------------
C INTERNAL STATE DEFINITIONS C
C C
C 1 = ++ MOVE UP ONE STEP C
C 2 = +- MOVE RIGHT ONE STEP C
C 3 = M MOVE ONE STEP DOWN
C 4 = -+ MOVE ONE STEP LEFT
C
C-----------------------------------------
C--------------------------------
C SET LOCATION MATRICES
C--------------------------------
    DO }10\textrm{I}=1,\textrm{NN},+
    DO 11 J=1,NN,+1
    DO 12 K=1,4,+1
        LOCI (I,J,K) = ZERO
        LOC2 (I, J,K)=ZERO
    12 CONTINUE
        DLA (I,J) =0
    11 CONTINUE
    10 CONTINUE
    LOCI {INT (RAND (0)*NN ), INT (RAND (0)*NN), 1) = ONE
        DO I=0,5
        DO J=0,5
        DLA (SEED2 +I, SEED 2 +J) =1
        END DO
        END DO
        DO WHILE (BIGSTEP.LT.1000)
C-----------.---------------------------
C Update Neighbors matrix C
C-----------.-----------------------------
    DO }807\textrm{I}=1,NN,
    DO }808\textrm{J}=1\mathrm{ ,NN, I
    NEIGHBORS (I,J)=0
    808
    CONTINUE
    CONTINUE
    DO }707\textrm{I}=1,NN,
    DO }708\textrm{J}=1,\textrm{NN},
        IF (DLA(I,J),NE,O) THEN
            IF (I.LT.NN) THEN
                IIp=I+1
            ELSE
                IIp=1
            ENDIF
            IF (J.LT.NN) THEN
                JJp=J+1
            ELSE
                JJp=1
            ENDIF
            IF (I.GT. 1) THEN
                IIm=I-1
            ELSE
                IIm=99
            ENDIF
            IF (J.GT.1) THEN
                JJm=J-1
```

ELSE
$J J m=99$
ENDIF
NEIGHBORS $(I I p, J)=1$
NEIGHBORS $(I I m, J)=1$
NEIGHBORS $(I, J J p)=1$
NEIGHBORS (I,JJm) $=1$
ENDIE CONTINUE


```
DO 607 I=1,NN, I
DO }508\textrm{J}=1,\textrm{NN},
DO 609 K=1,4
    LOC2 (I,J,K)=0
```

609
608
607

```
DO 20 I=I,NNi+1
DO 21 J=1,NN,+1
DO }22\textrm{K}=1,4,+
        IF (LOC1 (I,J,K).NE, Q.ODO) THEN
            IF (K.EQ.1.ODO) THEN
                LOC2 (I,J, 1) =LOC2 (I, J, 1) +LOC1 (I,J,K)
                    LOC2 (I,J, 2) =LOC2 (I,J, 2) +\operatorname{LOC1 (I,J, K)}
                    LOC2 (I, J, 3) =LOC2 (I, J, 3) +LOC1 (I, J, K)
                    LOC2 (I, J, 4) =LOC2 (I, J, 4) +LOC1 (I,J,K)
                ELSEIF (K.EQ.2.ODO) THEN
                    LOC2 (I, J, 1) =LOC2 (I, J, 1) +LOC1 (I, J, K)
                    LOC2 (I,J, 2) =LOC2 (I,J, 2)-LOC1 (I,J,K)
                    LOC2 (I,J,3) =LOC2 (I,J, 3) +LOC1 (I,J,K)
                    LOC2 (I, J, 4) =LOC2 (I,J,4)-LOC1 (I,J,K)
                ELSEIF (K,EQ.3.0D0) THEN
                    LOC2 (I, J, 1) = LOC2 (I, J, 1) +LOC1 (I,J, K)
                    LOC2 (I,J, 2) = LOC2 (I,J, 2) +LOC1 (I, J, K)
                    LOC2 (I,J,3)=LOC2(I, J, 3)-LOC1 (I,J, K)
                    LOC2 (I,J, 4) =LOC2 (I, J, 4) -LOC1 (I,J,K)
                ELSE
                    LOC2 (I,J,1) =LOC2 (I,J, 1) +LOC1 (I,J, K)
                    LOC2(I,J, 2) =LOC2(I,J, 2)-LOC1(I,J,K)
                LOC2 (I, J, 3)=LOC2 (I,J, 3)-LOC1 (I,J, K)
                    LOC2 (I,J,4) =LOC2 (I,J, 4) +LOC1 (I,J,K)
                ENDIF
            ENDIF
CONTINUE
CONTINUE
CONTINUE
```

DO $23 \mathrm{I}=1, \mathrm{NN},+1$
DO $24 J=1, \mathrm{NN}_{1}+1$
DO $25 \mathrm{~K}=1,4,+1$

```
    LOC1 (I, J,K) = LOC2 (I,J,K)/ (2.0DO)
                OC2 (I,J,K) =ZERO
CONTINUE
CONTINUE
CONTINUE
C----------------
C F OPERATOR C
```

```
DO 30 I=1,NN, +1
DO 31 J=1,NN,+1
    IF (I.LT.NN) THEN
        IIp=I+1
    ELSE
        IIp=1
    ENDIF
    IF {J.LT.NN} THEN
        JJp=J+1
    ELSE
        JJp=1
    ENDIF
    IF (I.GT. 1) THEN
        IIm=I-1
    ELSE
        IIm=99
    ENDIF
    IF (J.GT.1) THEN
        JJm=J-1
    ELSE
        JJm=99
    ENDIF
    DO }32\textrm{K}=1,4,+
        IF (LOC1 (I,J,K).NE.O.ODO) THEN
    IF (K.EQ.1) THEN
        IF (DLA (I,JJp).EQ.0) THEN
            LOC2 (I,J,K) = ZERO
            LOC2 (I, JJP, K) =LOC2 (I,JJp,K) +LOC1 (I,J,K)
        ELSE
            LOC2 (I,J,K)=LOC1 (I, J,K)
        ENDIF
    ENDIF
    IF (K.EQ 2) THEN
        IF (DLA(IIp,J).EQ.0) THEN
            LOC2 (I,J,K) =2ERO
            LOC2 (IIp,J,K) =LOC2 (IIp,J,K) +LOC1 (I,J, K)
        ELSE
            LOC2 (I,J,K)=LOC1 (I,J,K)
        ENDIF
    ENDIF
    IF (K.EQ.3) THEN
        IF (DLA (I,JJm).EQ.0) THEN
            LOC2 (I,J,K) = ZERO
            LOC2 (I, JJm,K)=LOC2 (I, JJm,K) +LOC1 (I,J, K)
        ELSE
            LOC2 (I,J,K) =LOC1 (I,J,K)
        ENDIF
    ENDIF
    IF (K.EQ.4) TREN
```

```
                    IF (DLA (IIm,J).EQ,O) THEN
                    LOC2 (I,J,K)=ZERO
                        LOC2 (IIm,J, K) =LOC2 {IIm,J,K) +LOCI (I, J,K}
                        ELSE
                            LOC2(I,J,K)=LOC1 (I,J,K)
                    ENDIF
                    ENDIF
        ENDIF
        32
        31
30
    ONTINUE
    CONTINUE
    CONTINUE
        DO }33\textrm{I}=1,NN,+
        DO 34 J=1,NN,+1
        DO }35\textrm{K}=1,4,+
        LOC1 (I,J,K)=LOC2 (I,J,K)
    CONTINUE
    CONTINUE
    CONTINUE
```



```
            DO 40 I=1, NN r}+
            DO 41 J=1,NN,+1
                PROB (I,J) =ABS (LOC1 (I,J, 1))**2+ABS (LOC1 (I,J, 2) )**2+
                            ABS (LOC1 (I,J,3))**2+ABS(LOC1 (I,J,4))**2
            PROB (I,J) =PROB (I,J)*NEIGHBORS (I,J)* (I-DLA (I,J))
        CONTINUE
    40 CONTINUE
C SUMT}=\mathrm{ ZERO
C DO 50 I=1,NN,+1
C DO }52\textrm{J}=1,NN,+
C SUMT =SUM+PROB (I,J)
C 52 CONTINUE
C 50 CONTINUE
C------------------------------------------------------------------
C SET PROB MATRIX FOR CHOOSING LOACTION C
C---------------------------------------------------------------
C Each location has a probability of the particle C
C choosing that spot. The probability of each
                                C
C location will now be changed to a value so that C
C the probability is represented by the range C
C between the location and the location before it. C
C The total range is from 0 to 1, and the range c
C will be assigned row by row.
    SUM=ZERO
        DO }60\textrm{I}=1,\textrm{NN},+
        DO 61 J=1,NN,+1
        IF (PROB(I,J) ,NE, ZERO) THEN
            SUM=SUM+PROB (I,J)
            PROE (I,J) =SUM
        ENDIF
    6 1 ~ C O N T I N U E ~
    60 CONTINUE
```



```
C------------------------------------------------------------------------
C Use random number generator to get a random value. C
C The location chosen by the particle will be decideded
c by the ranges now defined in the matrix PROB. If the
C number is less than the value in a location, but C
c
C greater than the number in the previous location, it }
C comes to rest in the current location. C
```



```
            CHX=RAND (0)
            FLAG = 0
            DO }70\textrm{I}=1,NN,+
            DO }71\textrm{J}=1,\textrm{NN},+
                IF (CHX.LT.PROB(I,J)) THEN
                    II=I
                    JJ=J
                    FLAG=1
                    GOTO }88
        ENDIF
    71 CONTINUE
    70 CONTINUE
    888 CONTINUE
C-----------------------------------------------------------------
C This section dictates the location selection C
C based upon previously selected spots. If a C
C spot is already full, the surrounding spots are C
C randomly selected based upon whether they are C
C already occupied or not. C
C----.----------------------------------------------------------
    IF (FLAG.EQ.1) THEN
        print *, II,JJ, "FOUND"
        DLA. (II,JJ) = 1
        STP=STPMAX
C-----------------------------------------------
C Particle keeps moving if it does C
C not meet an occupied location. C
c------.-.-.-.---------------------------------
    ELSE
        STP=STP+1
        ENDIF
        ENDDO
        STP=0
        print *, BIGSTEP
    BIGSTEP=BIGSTEP+1
    DO 1080 I=1,NN,+1
    DO }1081\textrm{J}=1,NN,+
    DO }1082\textrm{K}=1,4,+
        LOCI (I,J,K) =2ERO
    1082 CONTINUE
    1081 CONTINUE
    1080 CONTINUE
```

$\operatorname{LOC1}(\operatorname{INT}(\operatorname{RAND}(0) * N N), \operatorname{INT}(\operatorname{RAND}(0) * N N), 1)=\operatorname{ONE}$
ENDDO
C--N WRITE IN DATA FILE C

```
C------------------------------
```

    DO \(90 I=1, N N,+1\)
    DO \(91 \mathrm{~J}=1, \mathrm{NN},+1\)
        IF (DLA (I,J).NE. O) THEN
            \(\operatorname{WRITE}(4,5) I, J\)
        ENDIF
    CONTINUE
CONTINUE

CLOSE (4)
STOP
1 FORMAT(' ', 1X, F12.4,' ', 1X, I5,' ', 1X, F9. 6)

' ', 1x,F9.6.' ', 1x,F9.6,' ', 1x,F9.6,' ', 1x, F9.6,
$6 \quad$ ' $\quad$, 1x, F9.6,' ', 1x,F9.6,' ', 1x, F9.6,' ', 1x, F9.6,
7 ' ', 1x,F9.6.' ', 1x,F9.6,' ', 1x, F9.6.' ', 1x, F9.6,
' ', 1x,F9.6,' ',1x,F9.6,' ', 1x, F9.6)

"',I5,' ', I5, '", I5, ", I5, '", I5,
${ }^{\prime}, 1 \mathrm{IX}$, I5, ' $', 1 \mathrm{X}, I 5,{ }^{\prime}, 1 \mathrm{IX}, I 5, \cdots, 1 \mathrm{X}, I 5,{ }^{\prime}, 1 \mathrm{IX}$, I5,
${ }^{\prime}, 1 \mathrm{X}$, IS, ' $', 1 \mathrm{X}$, I5, ${ }^{\prime}, 1 \mathrm{IX}$, IS, $\cdot ', 1 \mathrm{X}$, I5, ${ }^{\prime}, 1 \mathrm{IX}$, I5,

${ }^{\prime \prime}, 1 \mathrm{X}$, I5, ' $', 1 \mathrm{X}$, I5, '', 1 X, I5, ' ', IX, I5, '', IX, I5,

FORMAT (' ' 6 X, ' X ', ' ', 6 X, ' Y ', '', 4 X , 'VALUE')
FORMAT (' ', 1x, F9.6, ' ',1x,F9.6,' ' , 1x, F9.6,' ', 1x, F9.6,
,1x,F9.6,' ', 1x,F9.6,' ', 1x,F9.6,' ', 1x,F9.6.
${ }^{\prime}, 1 \mathrm{x}, \mathrm{F9} .6$,' ', 1x,F9.6,' ', 1x,F9.6,' 1,1x,F9.6,
', 1x,F9.6,' ',1x,F9.6,' ', 1x,F9.6,' ', 1x,F9.6,
',1x,F9.6,' ',1x,F9.6,' ',1x, F9.6,' ', 1x, F9.6,
FORMAT(' ', 1X, I9, ' ', 1X, I9)
END

## First Classical Model Program Code

PROGRAM classic2

| c |  | C |
| :---: | :---: | :---: |
| c | PROJECTION | C |
| C |  | C |
| c | This program aims to simulate random movement | C |
| C | of a particle based upon quantum mechanics and | C |
| C | take into account the internal states of the particles. | c |
| C | Using the quantum model, it aims to simulate a classical | c |
| C | random walk by selecting a location after itereation. | c |
| c |  | C |
| C |  |  |
| C |  | c |
| C | PARAMETERS | c |
| C |  | c |
| c | LOC = LOCATION MATRIX | C |
| C | BIGSTEP $=$ NUMBER OF PARTICLES | c |
| C | STEPMAX = NUMBER OF STEPS PARTICLE CAN TAKE | c |
| C | STP $=$ STEP NUMBER | c |
| C | PROB = PROBABILITY MATRIX | c |
| C | CHX $=$ CHOSEN LOCATION | C |
| C | SUM = CHECK TO ENXURE THAT TOTAL PROBABILITY IS 1 | c |
| C | NN = DEFINES MATRIX SIZE | C |
| C | SEED2 = SEED LOCATION | c |
| c | DLA $=$ MATRIX OF CHOSEN LOCATIONS | C |
| C | FLAG $=$ CHECKS FOR NEIGHBORING PARTICLES | c |
| C |  | C |
|  |  |  |

IMPLICIT REAL *8 (A-H, O-2)
INTEGER STP, SEED2,NN, DLA $(99,99)$, BIGSTEP, II, JJ
INTEGER SEED, STEPMAX, IIp, IIm, JJp, JJm, FLAG
REAL *8 $\operatorname{PROB}(99,99), \operatorname{CHX}, \operatorname{SUM}, \operatorname{LOC1}(99,99,4), \operatorname{LOC} 2(99,99,4)$
$\operatorname{OPEN}(1, F I L E=$ ' $c 2$, dat', STATUS $=$ ' UNKNOWN ' )
OPEN(2,FILE='c2prob.dat', STATUS = 'UNKNOWN')
OREN (3,FILE='c2spot.dat',STATUS= 'UNKNOWN')
$\operatorname{OPEN}(4$, FILE $=$ ' 2 sppot 3 . dat', STATUS $=$ 'UNKNOWN')


```
    ZERO = O.ODO
    ONE = 1.0DO
    SUM = ZERO
    NN = 99
    STRTY = (NN+1)/2
    STRTX = (NN+1)/2
    SEED2 = 47
    STP = 0
    BIGSTEP = 0
    STEPMAX = 1000
C-------------------------------------------
C INITIALILE RANDOM NUMBER GENERATOR C
C----------------------------------------------
```

SEED=TIME ()
CALL=RAND (SEED)

```
C
c------------------------------
C SET LOCATION MATRICES
C----------------------------------
        DO 10 I=1,NN,+1
        DO }11\textrm{J}=1,\textrm{NN},+
        DO }12\textrm{K}=1,4,+
            LOC1 (I,J,K) = ZERO
            LOC2 (I,J,K) = ZERO
            DLA (I,J)=0
        CONTINUE
    11 CONTINUE
    10 CONTINUE
        LOC1 (INT (RAND (0)*NN), INT(RAND (0)*NN), 1) = ONE
        DO 14 I=0,5,+1
        DO }15\textrm{J}=0,5,+
            DLA (SEED2 + I,SEED2 +J) =1
    15 CONTINUE
```

C HADAMARD TRANSFORMATION C

DO WHILE (BIGSTEP, LT . 1000)
DO WHILE (STP.LT.STEPMAX)
SUM $=Z E R O$

```
    DO 20 I=1,NN,+1
    DO 21 J=1,NN,+1
    DO 22 K=1,4,+1
        IF (LOCI (I,J, K) ,NE , O ODO) THEN
            IF (K.EQ.1.ODO) THEN
                LOC2 (I,J,1) = LOC2 (I,J,I) +LOC1 (I,J,K)
                LOC2(I,J, 2) =LOC2 (I,J, 2) +LOC1 (I,J,K)
                LOC2 (I,J, 3)=\operatorname{LOC2}(I,J,3)+\operatorname{LOC1 (I,J,K)}
                LOC2 (I, J, 4) = LOC2 (I,J,4) +\operatorname{LOC1 (I,J,K)}
            ELSEIF (K.EQ.2.ODO) THEN
                LOC2(I,J,1)=\operatorname{LOC2}(I,J,1)+LOC1 (I,J,K)
                LOC2(I,J, 2)=LOC2(I,J, 2)-LOCl (I,J,K)
                LOC2 (I,J, 3) =LOC2 (I,J,3) +LOC1 (I,J,K)
                LOC2 (I,J,4) =LOC2 (I,J,4) -LOC1 (I,J,K)
            ELSEIF (K.EQ 3,ODO) THEN
                LOC2 (I,J,I) =LOC2 (I,J,I) +LOC1 (I,J,K)
                LOC2(I,J,2)=LOC2 (I,J, 2)+LOC1 (I,J,K)
                LOC2 (I,J,3)=LOC2(I,J,3)-LOC1 (I,J,K)
                LOC2 (I,J, 4) =LOC2 (I,J, 4) - LOC1 (I, J,K)
            ELSE
```

```
    LOC2(I,J, 1) = LOC2 (I, J, 1) +LOC1 (I,J, K)
    LOC2 (I,J, 2) =LOC2 (I,J, 2)-LOC1 (I,J,K)
    LOC2(I,J, 3)=LOC2 (I,J,3)-LOC1 (I,J,K)
            LOC2(I,J, 4) =LOC2 (I,J,4) +LOC1 (I,J,K)
                ENDIF
        ENDIF
        CONTINUE
        CONTINUE
        CONTINUE
        DO 23 I=1,NN,+1
        DO 24 J=1,NN,+1
        DO 25 K=1,4,+1
        LOC1 (I,J,K) =LOC2 (I,J,K) / (2,ODO)
        LOC2 (I,J, K) = ZERO
        PROB(I,J)=ZERO
CONTINUE
CONTINUE
CONTINUE
C--------------------C
C F OPERATOR C
```

```
DO 30 I=1,NN,+1
```

DO 30 I=1,NN,+1
DO 31 J=1,NN,+1
DO 31 J=1,NN,+1
DO }32\textrm{K}=1,4,+
DO }32\textrm{K}=1,4,+
IF (LOC1 (I,J,K) NE, O ODO) THEN
IF (LOC1 (I,J,K) NE, O ODO) THEN
LOC2 (I, J, X) = ZERO
LOC2 (I, J, X) = ZERO
IF (K.EQ.1.0DO) THEN
IF (K.EQ.1.0DO) THEN
IF (J+1.LE,NN) THEN
IF (J+1.LE,NN) THEN
LOC2 (I,J+1,K)=LOC2 (I, J+1,K) +LOC1 (I,J,K)
LOC2 (I,J+1,K)=LOC2 (I, J+1,K) +LOC1 (I,J,K)
ELSE
ELSE
LOC2(I, 1,K) =LOC2 (I, 1,K) +LOC1(I,J,K)
LOC2(I, 1,K) =LOC2 (I, 1,K) +LOC1(I,J,K)
ENDIF
ENDIF
ELSEIF (K.EQ.2.ODO) THEN
ELSEIF (K.EQ.2.ODO) THEN
IF (I+1.LE.NN) THEN
IF (I+1.LE.NN) THEN
LOC2(I+1,J,K)=LOC2(I+1,J,K) +LOC1 (I,J,K)
LOC2(I+1,J,K)=LOC2(I+1,J,K) +LOC1 (I,J,K)
ELSE
ELSE
LOC2 (1,J,K) =LOC2 (1,J,K) +LOC1 (I,J,K)
LOC2 (1,J,K) =LOC2 (1,J,K) +LOC1 (I,J,K)
ENDIF
ENDIF
ELSEIF (K.EQ.3.ODO) THEN
ELSEIF (K.EQ.3.ODO) THEN
IF (J-1.GE.0) TREN
IF (J-1.GE.0) TREN
LOC2(I,J-1,K)=LOC2 (I,J-1,K) +LOC1 (I,J,K)
LOC2(I,J-1,K)=LOC2 (I,J-1,K) +LOC1 (I,J,K)
ELSE
ELSE
LOC2 (I,NN,K)=LOC2 (I,NN,K) +LOC1 (I,J,K)
LOC2 (I,NN,K)=LOC2 (I,NN,K) +LOC1 (I,J,K)
ENDIF
ENDIF
ELSE
ELSE
IF (I-1.GE,0) THEN
IF (I-1.GE,0) THEN
LOC2 (I-1,J, K) =LOC2 (I-1,J,K) +LOC1 (I,J,K)
LOC2 (I-1,J, K) =LOC2 (I-1,J,K) +LOC1 (I,J,K)
ELSE
ELSE
LOC2 (NN,J,K) = LOC2 (NN,J,K) +LOC1 (I,J,K)
LOC2 (NN,J,K) = LOC2 (NN,J,K) +LOC1 (I,J,K)
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
CONTINUE
CONTINUE
31
CONTINUE
CONTINUE
CONTINUE
CONTINUE
DO 33 I=1,NN,+1

```
DO 33 I=1,NN,+1
```

```
            DO }34\textrm{J}=1,\textrm{NN},+
DO }35\textrm{K}=1,4,+
    LOC1 (I,J,K)=LOC2 (I, J,K)
CONTINUE
CONTINUE
CONTINUE
C
        DO }40\mathrm{ I= 1,NN,+1
        DO }41\textrm{J}=1,NN,+
                            PROB(I,J)=ABS (LOC1 (I,J,1))**2+ABS (LOC1 (I, J, 2))**2+
    1
                                    ABS (LOCl (I,J, 3))**2+ABS (LOC1 (I, J, 4))**2
35
34
41 CONTINUE
40 CONTINUE
DO }50I=1,NN,+
DO }52\textrm{J}=1,\textrm{NN},+
                SUM=SUM+PROB(I,J)
5 2 ~ C O N T I N U E ~
50 CONTINUE
\begin{tabular}{ll} 
c & DO \(90 \quad I=1, \mathrm{NN},+1\) \\
\(c\) & DO \(91 \quad \mathrm{~J}=1, \mathrm{NN},+1\) \\
c & \(\quad\) WRITE \((4,5) I, J, \operatorname{PROB}(I, J)\) \\
c 91 & CONTINUE \\
c 90 & CONTINUE
\end{tabular}
```

| C-n | SET PROB MATRIX FOR CHOOSING LOACTION | C |
| :--- | :--- | ---: |
| C | Cach location has a probability of the particle | C |
| C | Choosing that spot. The probability of each | C |
| C | location wil now be changed to a value so that | C |
| C | the probability is represented by the range | C |
| C | between the location and the location before it. |  |
| C | The total range is from 0 to 1 , and the range | C |
| C | will be assigned row by row. | C |

SUM $=$ ZERO
DO $60 I=1, N N,+1$
DO $61 \mathrm{~J}=1, \mathrm{NN},+1$
IF ( $\operatorname{PROB}(I, J), N E, Z E R O)$ THEN SUM=SUM + PROB ( $I, J$ ) $\operatorname{PROB}(I, J)=S U M$
ENDIE
61 CONTINUE
60 CONTINUE


CHX $=$ RAND (0)
DO $70 \mathrm{I}=1, \mathrm{NN},+1$
DO $71 \mathrm{~J}=1$, NN,+1
IF (CHX.LT, $\operatorname{PROB}(I, J))$ THEN
II=I
JJ=J
GOTO 888
ENDIF
71 CONTINUE
70 CONTINUE

888 CONTINUE

| C-N | This section dictates the location selection | C |
| :--- | :--- | ---: |
| C | based upon previously selected spots. If a | C |
| C | spot is already full, the surrounding spots are | C |
| C | randomly selected based upon whether they are | C |
| C |  |  |
| C already occupied or not. |  |  |

IF (II, LT, NN) THEN
$I I p=I I+1$
ELSE
IIp=1
ENDIF
IF (JJ. LT. NN) THEN
$J J p=\mathrm{JJ}+1$
ELSE
$J J p=1$
ENDIF
IF (II.GT.1) THEN
IIm=II-1
ELSE
$I I_{\text {In }}=\mathrm{NN}$
ENDIF
IF (JJ. GT. 1) THEN
$\mathrm{JJm}=\mathrm{JJ}-1$
ELSE
$\mathrm{JJm}=\mathrm{NN}$
ENDIF

FLAG $=0$
IF (DLA (IIP, JJ) .NE, O) THEN
FLAG=1
ENDIF
IF (DLA (IIm, JJ) . NE , 0) THEN

```
                            FLAG=1
        ENDIE
        IF(DLA(II, JJP) .NE.0) THEN
            FLAG=1
        ENDIF
        IF (DLA (II, JJm) .NE.0) THEN
    FLAG=1
        ENDIF
        IF (FLAG.EQ.1)THEN
    DLA (II,JJ)=1
    print *, II,JJ, "found"
    STP=STEPMAX
```



```
C Particle keeps moving if it does C
C not meet an occupied location. C
c-----------------------------------------------
            ELSE
                        DO }80I=1,NN,+
                        DO }81\textrm{J}=1,\textrm{NN},+
        DO }82\textrm{K}=1,4,+
                    LOC1 (I, J,K) = 2ERO
                    LOC2 (I,J,K) = ZERO
    82 CONTINUE
    81 CONTINUE
    80 CONTINUE
            LOC1 (II,JJ, 1) = ONE
            STP=STP+1
        ENDIF
            ENDDO
            STP=0
            print *, bigstep
            BIGSTEP=BIGSTEP +1
                DO 100 I=1,NN,+1
                DO 101 J=1,NN,+1
                    DO }102\textrm{K}=1,4,+
                LOC1 (I, J, K) = ZERO
                LOC2 (I,J,K) = ZERO
                    CONTINUE
                CONTINUE
                CONTINUE
                LOC1(INT (RAND (0)*NN), INT(RAND (0)*NN),1) = ONE
                ENDDO
C
WRITE (1, 1) SUM, (BIGSTEP-1), CHX
DO 99 I=1,NN,+1
        WRITE (2,3) (PROB (I,J),J=1,NN, +1)
        WRITE (3,4) (DLA (I,J), J=1,NN, +1)
    9 9
CONTINUE
```

```
DO }90\textrm{I}=1,\textrm{NN},+
DO }91\textrm{J}=1,\textrm{NN},+
        IF (DLA(I,J).NE.O) THEN
        WRITE (4,5)I,J
        ENDIF
CONTINUE
CONTINUE
CLOSE (1)
CLOSE (2)
CLOSE (3)
CLOSE (4)
STOP
FORMAT(' ', 1X,F12.4,' ',1X,I5,' ',1X,F9.6)
FORMAT('',6X,'X','',6X,'Y','',4X,'VALUE')
FORMAT(' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
    ,1x,F9.6,' ', 1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
        ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
    ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
    ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x, E9.6,
    ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
    ',1x,F9.6,' ',1x,F9.6.' ',1x, E9.6,' ',1x,F9.6,
    ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ', 1x,F9.6,
    ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6)
FORMAT{'',I5,'',I5,'',I5,'',I5,'',I5,
        ,I5,'',I5,'',I5,'',I5,'',I5,
    ',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,
    '',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,
    ',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,
    '',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,
    '',1X,I5,'', 1X,I5,'', 1X,I5,'', 1X,I5,'',1X,I5)
FORMAT('',1X,I9,'',1X,I9)
END
```


## Second Quantum Model Program Code



SEED=TIME ()
CALL=RAND (SEED)

DO $I=0,5,+1$
DO $J=0,5,+1$
DLA (SEED2 + I, SEED2 + J $)=1$
END DO
END DO
FLAG $=0$
DO WHILE (FLAG.EQ. O)
ANG=RAND (0) *TPI
$I=\operatorname{INT}\left(\right.$ R0 ${ }^{*} \operatorname{COS}($ ANG $\left.)\right)+50$
$J=\operatorname{INT}($ RO*SIN $($ ANG $))+50$
IF (DLA (I, J).EQ.O) THEN
$\operatorname{LOC1}(I, J, 1)=$ ONE
FLAG $=1$
ENDIF
END DO

DO WHILE (BIGSTEP.LT.MAXSTEP)

C UPDATE NEIGHBORS MATRIX C

DO $807 \mathrm{I}=1, \mathrm{NN},+1$
DO $808 \mathrm{~J}=1, \mathrm{NN},+1$
NEIGHBORS $(I, J)=0$
IF (DLA $(I, J) . G T .1)$ THEN
$\operatorname{DLA}(I, J)=0$
END IF
END DO
END DO
DO $707 \mathrm{I}=1, \mathrm{NN},+1$
DO $708 \mathrm{~J}=1, \mathrm{NN},+1$
IF (DLA (I, J), NE. O) THEN
IF (I.LT.NN) THEN
$I I p=I+1$
ELSE
$I I p=1$
ENDIF

IF (J.LT.NN) THEN
$J J p=\mathrm{J}+1$
ELSE $J J p=1$
ENDIF
IE (I.GT.1) THEN

```
                IIm=I-1
```

ELSE
IIm=99
ENDIF
IF (J.GT. 1) THEN JJm=J-1
ELSE
JJm=99
ENDIF
NEIGHBORS (IIp,J) $=1$
NEIGHBORS (IIm,J) $=1$
$\operatorname{NEIGHBORS}(I, J J p)=1$
$\operatorname{NEIGHBORS}(I, J J m)=1$
ENDIF
ENDDO
ENDDO
DO WHILE (STP, LT, STPMAX)

```
C CALCULATE MATRIX FOR PROBABILITY IN EACH LOCATION C
C
    DO 40 I=1,NN, +1
    DO 41 J=1,NN,+1
                                PROB}(I,J)=ABS (LOC1 (I,J,1))**2+ABS (LOC1 (I,J,2))**2
                        ABS (LOC1 (I,J,3))**2+ABS (LOC1 (I, J, 4))***2
                                PROB (I,J)=PROB (I,J) *NEIGHBORS (I,J) * (I-DLA (I,J))
    CONTINUE
    CONTINUE
```




```
            CHX=RAND (0)
                FLAG = 0
            DO }70\textrm{I}=1,\mp@subsup{\textrm{NN}}{8}{}+
            DO }71\textrm{J}=1,\textrm{NN},+
        IF (CHX.IT.PROB2 (I,J)) THEN
            II=I
            JJ=I
            FLAG=1
            GOTO 888
        ENDIF
        CONTINUE
        CONTINUE
        CONTINUE
        IF (FLAG.EQ.1) THEN
        print *, II,JJ, SUM, RO, "FOUND"
        DLA (II,JJ) = 1
        STP=STPMAX
        R0=30.0+REAL (BIGSTEP*15.0)/MAXSTEP
    C---------------------------------------------
C Particle keeps moving if it does C
C not meet an occupied location. C
ELSE
    STP=STP+1
C--------------------------
C MOVE WAVE FUNCTION C
C-------------------------------
DO 23 I=1,NN, +1
DO 24 J=1,NN,+1
DO }25\textrm{K}=1,4,+
        LOC2 (I, J,K) = ZERO
    CONTINUE
    CONTINUE
    CONTINUE
```

```
DO 20 I=1,NN,+1
```

DO 20 I=1,NN,+1
DO 21 J=1,NN,+1
DO 21 J=1,NN,+1
DO }22\textrm{K}=1,4,+
DO }22\textrm{K}=1,4,+
LOC1 (I,J,K)=LOC1 (I,J,K)/SQRT ((ONE-SUM))
LOC1 (I,J,K)=LOC1 (I,J,K)/SQRT ((ONE-SUM))
IF (PROB3(I,J),NE, ZERO) THEN
IF (PROB3(I,J),NE, ZERO) THEN
LOCI (I,J,K)=2ERO
LOCI (I,J,K)=2ERO
ENDIF
ENDIF
IF (LOC1(I,J,K).NE. ZERO) THEN
IF (LOC1(I,J,K).NE. ZERO) THEN
IF (K.EQ.1.ODO) THEN
IF (K.EQ.1.ODO) THEN
LOC2 (I,J,I) =LOC2 (I,J, 1) +LOC1 (I,J,K)
LOC2 (I,J,I) =LOC2 (I,J, 1) +LOC1 (I,J,K)
LOC2 (I,J, 2) =LOC2 (I,J, 2)+LOC1 (I,J,K)
LOC2 (I,J, 2) =LOC2 (I,J, 2)+LOC1 (I,J,K)
LOC2(I,J, 3)=LOC2 (I,J, 3) +LOC1 (I, J, K)
LOC2(I,J, 3)=LOC2 (I,J, 3) +LOC1 (I, J, K)
LOC2 (I, J, 4) =LOC2 (I,J, 4)+LOC1 (I,J, X)
LOC2 (I, J, 4) =LOC2 (I,J, 4)+LOC1 (I,J, X)
ELSEIF (K.EQ.2.ODO) THEN
ELSEIF (K.EQ.2.ODO) THEN
LOC2 (I,J, 1) =LOC2 (I, J, 1) +LOC1 (I,J,K)
LOC2 (I,J, 1) =LOC2 (I, J, 1) +LOC1 (I,J,K)
LOC2(I,J, 2) =LOC2(I, J, 2)-LOC1 (I,J, K)
LOC2(I,J, 2) =LOC2(I, J, 2)-LOC1 (I,J, K)
LOC2 (I,J,3)=LOC2 (I,J,3)+\operatorname{LOC1 (I,J,K)}
LOC2 (I,J,3)=LOC2 (I,J,3)+\operatorname{LOC1 (I,J,K)}
LOC2 (I, J, 4) =LOC2 (I, J, 4) -LOC1 (I,J, K)
LOC2 (I, J, 4) =LOC2 (I, J, 4) -LOC1 (I,J, K)
ELSEIF {K.EQ.3.ODO) THEN
ELSEIF {K.EQ.3.ODO) THEN
LOC2 (I,J, 1) =LOC2 (I,J,1) +LOC1 (I,J,K)
LOC2 (I,J, 1) =LOC2 (I,J,1) +LOC1 (I,J,K)
LOC2(I,J,2) = LOC2 (I,J, 2)+\operatorname{LOC1 (I,J,K)}
LOC2(I,J,2) = LOC2 (I,J, 2)+\operatorname{LOC1 (I,J,K)}
LOC2 (I, J, 3)=LOC2 (I,J,3)-LOC1 (I,J, K)
LOC2 (I, J, 3)=LOC2 (I,J,3)-LOC1 (I,J, K)
LOC2(I,J,4)=LOC2(I, J, 4) -LOC1 (I,J, K)

```
                LOC2(I,J,4)=LOC2(I, J, 4) -LOC1 (I,J, K)
```

ELSE
$\operatorname{LOC} 2(I, J, 1)=\operatorname{LOC} 2(I, J, 1)+\operatorname{LOC} 1(I, J, K)$
$\operatorname{LOC} 2(I, J, 2)=\operatorname{LOC} 2(I, J, 2)-\operatorname{LOC} 1(I, J, K)$
$\operatorname{LOC} 2(I, J, 3)=\operatorname{LOC} 2(I, J, 3)-\operatorname{LOC} 1(I, J, K)$
$\operatorname{LOC} 2(I, J, 4)=\operatorname{LOC} 2(I, J, 4)+\operatorname{LOC} 1(I, J, K)$
ENDIF
ENDIF
CONTINUE
CONTINUE
CONTINUE
DO $93 \mathrm{I}=1, \mathrm{NN},+1$
DO $94 \mathrm{~J}=1, \mathrm{NN},+1$
DO $95 \mathrm{~K}=1,4,+1$
$\operatorname{LOC1}(I, J, K)=\operatorname{LOC} 2(I, J, K) /(2 . O D O)$
LOC2 (I, J, K) =2ERO
CONTINUE
CONTINUE
CONTINUE

```
C F OPERATOR C
```

    DO \(30 I=1, N N,+1\)
    DO \(31 \mathrm{~J}=1, \mathrm{NN},+1\)
        IF (I.LT.NN) THEN
        \(I I p=I+1\)
    ELSE
        IIp \(=1\)
    ENDIF
    IF (J.LT.NN) THEN
        \(\mathrm{JJp}=\mathrm{J}+1\)
    ELSE
        JJp \(=1\)
    ENDIF
    IF (I.GT, 1) THEN
        \(1 \mathrm{Im}=\mathrm{I}-1\)
    ELSE
        \(\operatorname{IIm}=99\)
    ENDIF
    IF (J.GT. 1) THEN
        \(J J_{\mathrm{m}}^{\mathrm{m}}=\mathrm{J}-1\)
            ELSE
                JJm=99
            ENDIF
            DO \(32 \mathrm{~K}=1,4,+1\)
                IF (LOCl \((I, J, K)\).NE \(, ~ O, ~ O D O) ~ T H E N ~\)
                    \(\operatorname{LOC} 2(I, J, K)=Z E R O\)
                    IF (K.EQ.1) THEN
                    \(\operatorname{LOC} 2(I, J J p, K)=\operatorname{LOC} 2(I, J J p, K)+L O C 1(I, J, K)\)
                    ENDIF
                    IF (K.EQ. 2) THEN
                            LOC2 \((I I p, J, K)=\) LOC2 \((I I p, J, K)+\) LOC1 \((I, J, K)\)
                    ENDIF
                    IF (K.EQ. 3) THEN
                    \(\operatorname{LOC} 2(I, J J m, K)=\) LOC2 \((I, J J m, K)+\) LOC1 (I, J, K \()\)
                    ENDIF
                    IF (K.EQ.4) THEN
                                    \(\operatorname{LOC} 2(\operatorname{IIm}, \mathrm{~J}, \mathrm{~K})=\operatorname{LOC} 2(\operatorname{IIm}, \mathrm{~J}, \mathrm{~K})+\mathrm{LOC1}(\mathrm{I}, \mathrm{J}, \mathrm{K})\)
                    ENDIF
            ENDIF
    CONTINUE
    

```
DO }33\textrm{I}=1,\mp@subsup{\textrm{NN}}{1}{}+
DO }34\textrm{J}=1,NN,+
DO }35\textrm{K}=1,4,+
    LOC1 (I,J,K) = LOC2 (I,J,K)
    CONTINUE
    CONTINUE
    CONTINUE
        ENDIF
    ENDDO
    STP=0
    print *, BIGSTEP
    BIGSTEP=BIGSTEP+1
    DO }1080\mathrm{ I=1,NN,+1
    DO 1081 J=1,NN,+1
    DO 1082 K=1,4,+1
        LOC1(I,J,K)=2ERO
    CONTINUE
    CONTINUE
    CONTINUE
    FLAG = 0
    DO WHILE (FLAG.EQ.0)
        ANG=RAND (0)*TPI
        I = INT (R0* COS (ANG)) + 50
        J = INT(RO*SIN(ANG)) + 50
        IF (DLA(I,J).EQ,O) THEN
            LOCI(I,J,I) = ONE
        FLAG =1
        ENDIF
            ENDDO
ENDDO
C----------------------
C------------------------------
            DO }90\textrm{I}=1,NN,+
            DO }91\textrm{J}=1,NN,+
            IF (DLA(I,J),NE,0) THEN
                WRITE (4,5)I,J
            ENDIF
            CONTINUE
                    CONTINUE
                    CLOSE (4)
                    STOP
1 FORMAT (' ', 1X, F12.4,' ', IX,I5,' ', 1X, F9. 6)
2 FORMAT('', 6X, 'X','', 6X,' ' ', '', 4X,'VALUE')
3 1
    FORMAT(' ',1x,F9.6,' ',1x, F9.6,' ',1x,F9.6,' ',1x, F9.6,
        1
```



```
        3
        ' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
```

```
    4 ' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
    ' ',1x,F9.6.' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
    ' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
    ' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
    ' , 1x,F9.6,' ',1x,F9.6,' ,,1x,F9.6)
    FORMAT ('',I5, '',I5, '',I5,'',I5,'',I5,
    1 '',I5,'',I5,'',I5,'',I5,'',I5,
    '1, 1X,I5,'',1X,I5, '',1X,I5, '', 1X,I5, '', 1X,I5,
    '', 1X,I5,'', IX,I5,'', 1X, I5, '', 1X,I5,', IX,I5,
    '',1X,I5,'',1X,I5,'',1X,I5,'',IX,I5,'', 1X,I5,
    '1,1X,I5,'',1X,I5,'',1X,I5,'1,IX,I5,'',1X,I5,
    \prime',1X,I5,'',IX,I5,', 1X,I5,'',IX,I5,'',1X,I5)
        FORMAT ('',IX,I9,' ', 1X,I9)
        END
```


## Second Classical Model Program Code

```
    PROGRAM classic3
C-----------------------------------------------------------------------------
C C
C PROJECTION C
C C
C This program aims to simulate random movement C
C of a particle based upon quantum mechanics and C
C take into account the internal states of the particles. C
C Using the quantum model, it aims to simulate a classical C
C. random walk by selecting a location after itereation. C
C C
```



```
C C
C PARAMETERS C
C. C
C LOC = LOCATION MATRIX C
C STP = STEP NUMBER C
C PROB = PROBABILITY MATRIX C
C CHX = CHOSEN LOCATION C
C SUM = CHECK TO ENXURE THAT TOTAL PROBABILITY IS 1 C
C NN = DEFINES MATRIX SIZE C
C STRT = DEFINES CENTER OF MATRIX C
C DLA = MATRIX OF CHOSEN LOCATIONS C
C. NEIGHBORS = CECHKS NEIGHBORS LOCATIONS FOR PARTICLES C
C C
C-------------------------------------------------------------------------
    IMPLICIT REAL *8 (A-H,O-Z)
    INTEGER STP,SEED2,NN,STRTY,DLA(99,99),BIGSTEP,II,JJ
    INTEGER NEIGHBORS (99,99),I,J, MAXBIG
    INTEGER STRTX,SEED,IIp,IIm,JJp,JJm,FLAG, STPMAX
    REAL *& PROB (99,99), CHX, SUM, PROBold (99,99), PROB2 (99,99)
    REAL *8 PROB3 (99,99), PI, AN, RO
    OPEN(4,FILE= 'c3spot2.dat',STATUS='UNKNOWN')
C-----------------------------------
C SET DEFAULT PARAMETERS C
```



```
    ZERO = 0.0DO
    ONE = 1.0DO
    SUM = ZERO
    NN =99
    STRTY = (NN+1)/2
    STRTX = (NN+1)/2
    SEED2 = 47
    STP = 0
    BIGSTEP = 0
    STPMAX=500
    MAXBIG}=400
    TPI=2*3.1415926536
    RO=30.0
C-----------------------------------------------
C INITIALIZE RANDOM NUMBER GENERATOR C
C-------------------------------------------------
    SEED=TIME ()
    CALL=RAND (SEED)
```

```
C---------------------------------
C SET PROBABILITY MATRICE C
C-------------------------------
    DO 10 I=1,NN,+1
    DO 11 J=1,NN,+1
        DLA (I,J) =0
        PROB (I,J)=ZERO
    11 CONTINUE
10 CONTINUE
    DO I=0,5,+1
    DO J=0,5,+1
        DLA (SEED2 +I, SEED2 +J)=1
        ENDDO
        ENDDO
        FLAG = 0
        DO WHILE (FLAG.EQ.0)
        ANG=RAND (0)*TPI
        I = INT(R0*COS(ANG)) + 50
        J = INT(R0*SIN(ANG)) + 50
        IF (DLA (I,J).EQ.0) THEN
                PROB (I,J) = ONE
                FLAG =1
            ENDIF
ENDDO
C--------------------
C-------------------------------
    DO WHILE (BIGSTEP.LT.MAXBIG)
C----------------------------------------
C Update Neighbors matrix C
C-------------------------------------
    DO }807\textrm{I}=1,NN,+
    DO }808\textrm{J}=1,\textrm{NN},+
        NEIGHBORS (I,J)=0
        IF (DLA(I,J),GT.1) THEN
            DLA (I,J)=0
            END IF
808
    ENDDO
    ENDDO
        DO }707\textrm{I}=1,\mp@subsup{N}{N}{\prime}+
        DO }708\textrm{J}=1,\textrm{NN},+
        IF (DLA(I,J).NE.0) THEN
        IF (I.LT.NN) THEN
            IIp=I+1
                ELSE
                IIp=1
            ENDIF
            IF (J.LT,NN) THEN
                JJp=J+1
            ELSE
                JJp=1
            ENDIF
```

```
    IF (I.GT. I) THEN
                IIm=I -1
    ELSE
                IIm=99
            ENDIF
            IF (J.GT.1) THEN
                JJm=J-1
            ELSE
                JJm=99
            ENDIF
            NEIGHBORS (IIp,J) = 1
            NEIGHBORS(IIm,J) = I
            NEIGHBORS (I,JJD) = I
            NEIGHBORS(I,JJm) = 1
            ENDIF
                708 ENDDO
                707 ENDDO
            DO WHILE (STP.LT.STPMAX)
            DO 23 I=1,NN,+1
            DO 24 J=1,NN,+1
            PROBOId(I,J) = PROB(I,J)
            PROB(I,J)=2ERO
            CONTINUE
            CONTINUE
```



```
C Localize particle is there is a nonzero C
C probability on site(s) neighboring structure c
```


## SUM $=$ ZERO

```
            DO 60 I=1,NN,+1
```

            DO 60 I=1,NN,+1
            DO }61\textrm{J}=1,\textrm{NN},+
            DO }61\textrm{J}=1,\textrm{NN},+
            PROB3 (I,J) =PROBOld(I,J) *NEIGHBORS (I,J) * (1-DLA (I,J))
            PROB3 (I,J) =PROBOld(I,J) *NEIGHBORS (I,J) * (1-DLA (I,J))
            PROB2 (I,J)=ZERO
            PROB2 (I,J)=ZERO
            IF (PROB3 (I,J).NE.ZERO) THEN
            IF (PROB3 (I,J).NE.ZERO) THEN
                SUM=SUM+PROB3 (I,J)
                SUM=SUM+PROB3 (I,J)
                PROB2 (I , J) = SUM
                PROB2 (I , J) = SUM
            ENDIF
            ENDIF
                    CONTINUE
                    CONTINUE
    CONTINUE
CONTINUE

| C | CHOOSE LOCATION |
| :---: | :---: |
| C- |  |
| c | Use random number generator to get a random value. |
| C | The location chosen by the particle will be decideded |
| C | by the ranges now defined in the matrix PROB. If the |
| C | number is less than the value in a location, but |
| C | greater than the number in the previous location, it |
| c | comes to rest in the current location. |

```
```

                    CHX=RAND (0)
    ```
                    CHX=RAND (0)
                    FLAG = 0
                    FLAG = 0
            DO 70 I=1,NN,+1
            DO 70 I=1,NN,+1
            DO }71\textrm{J}=1,\textrm{NN},+
            DO }71\textrm{J}=1,\textrm{NN},+
            IF {CHX.LT, PROB2(I,J)} THEN
            IF {CHX.LT, PROB2(I,J)} THEN
                II=I
```

                II=I
    ```
```

                    JJ=J
                    FLAG=1
                    GOTO 888
            ENDIF
    7 1
CONTINUE
CONTINUE
7 0
CONTINUE
IF (FLAG.EQ.1) THEN
print *, II,JJ, SUM, RO, "FOUND"
DLA (II,JJ) = 1
STP=STPMAX
R0=30.+REAL (BIGSTEP*15.0)/MAXBIG
C-----------------------------------------------
C Particle keeps moving if it does C
C not meet an occupied location.
ELSE
STP=STP+1
C---.-.-.-.---------------------------------------
C Probability bounces off structure C
DO }30\textrm{I}=1,NN,+
DO }31\textrm{J}=1,NN,+
PROBOId(I,J)=PROBOId(I,J) / (ONE-SUM)
IF (PROB3 (I,J) ,NE. 2ERO) THEN
PROBOId(I,J)=ZERO
ENDIF
IF (PROBold(I,J).NE. ZERO) THEN
IF (I.LT.NN) THEN
IIp=I+1
ELSE
IIp=1
ENDIF
IF (J.LT.NN) THEN
JJp=J+1
ELSE
JJp=1
ENDIF
IF (I.GT.I) THEN
IIm=I-1
ELSE
IIm=99
ENDIF
IF (J.GT.1) THEN
JJm=J-1
ELSE .
JJm=99
ENDIF
PROB (I,JJp) = PROB (I,JJp) +PROBold (I,J) /4
PROB (I,JJm) = PROB (I,JJm) + PROBold (I,J)/4
PROB(IIp,J) = PROB (IIp,J) +PROBOId(I,J)/4
PROB (IIm,J) =PROB (IIm,J) +PROBOId (I,J)/4
ENDIF
CONTINUE
CONTINUE
ENDIF
ENDDO

```
```

STP=0
print *, BIGSTEP
BIGSTEP=BIGSTEP+1
DO }1080\textrm{I}=1,\textrm{NN},+
DO }1081\textrm{J}=1,\textrm{NN},+
PROB (I,J) =2ERO
1081 CONTINUE
1080 CONTINUE
FLAG = 0
DO WHILE (FLAG.EQ.0)
ANG=RAND (0) *TRI
I = INT (RO*COS(ANG)) + 50
J = INT(RO*SIN(ANG)) + 50
IF (DLA (I,J).EQ.0) THEN
PROB(I,J) = ONE
FLAG =1
ENDIF
ENDDO
ENDDO
C------------------------------
C WRITE IN DATA FILE
C------------~------------------
DO }90\textrm{I}=1,NN,+
DO 91 J=1,NN,+1
IF (DLA(I,J).NE,0) THEN
WRITE (4,5) I,J
ENDIF

```
```

FORMAT(' ', 1X,F12.4, ' , 1X, I5,' , ,1X,F9.6)
FORMAT ('', 6X, 'X', '', 6X, 'Y', '', 4X, 'VALUE')
FORMAT(' ' , 1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x, F9.6,
' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
' ',1x,F9.6,' ',1x,F9.6.' ',1x,F9.6,' ',1x,F9.6,
' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
' ', 1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,
' ',1x,F9.6,' ',1x,F9.6,' ',1x,F9.6,' ',1x, F9.6,
' ',1x,F9.6,' ',1x,F9.6,' ',1x, F9.6)
FORMAT('',IS,'',I5,'',I5,'',I5,'',I5,
'',I5,'',I5,'',I5,'',I5,'1,I5,
\#,1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,
'',1X,I5,'', 1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,
\cdots,1X,I5,'',1X,I5,', 1X,I5,'',1X,I5,',1X,I5,
'',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,
'',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5,'',1X,I5)
FORMAT('', IX,I9, '',1X,I9)

```

END

\section*{References}
[1] Aharonov, Y, L Davidovich, and N Zagury. "Quantum Random Walks." Rhysical Review A 48 (1993): 1687-1690.
[2] Blanchard, Ph , and M O. Hongler. "Quantum Random Walks and Piecewise Deterministic Evolutions." Physical Review Letters 92 (2004).
[3] Brun, Todd A., H A. Carteret, and Andris Ambainis. "Quantum Random Walks with Decoherent Coins." Physical Review A 67 (2003).
[4] Brun, Todd A., Hilary A. Carteret, and Andris Ambainis. "Quantum to Classical Transition for Random Walks." Physical Review Letters 91 (2003).
[5] Du, Jiangfeng, Hui Li, Xiaodong Xu, Mingjun Shi, Jihui Wu, Xianyi Zhou, and Rongdian Han. "Experimental Implementation of the Quantum Random-Walk Algorithm." Physical Review A 67 (2003).
[6] Jeong, H, M Paternostro, and M S. Kim, "Simulation of Quantum Random Walks Using Interference of a Classical Field." Physical Review A 69 (2004).
[7] Kempe, J. "Quantum Random Walks: an Introductory Overview." Contemporary Physics 44 (2003): 307-327.
[8] Liboff, Richard L. Introductory Quantum Mechanics. 4th ed. Patparganj, India: Pearson Education, Inc., 2003.
[9] Mackay, T D., S D. Bartlett, L T. Stephenson, and B C. Sanders. "Quantum Walks in Higher Dimensions." Journal of Physics a: Mathematical and General 35 (2002): 27452753
[10] Travaglione, B C ., and G J. Milburn. "Implementing the Quantum Random Walk." Physical Review A 65 (2002).
[11] Weickert, Brendan. "Infinite-Dimensional Complex Dynamics: a Quantum Random Walk." Discrete and Continuous Dynamical Systems 7 (2001): 517-524.
[12] http://www.gut-wirtz.de/dla/
[13] http://astronomy.swin.edu.au/~pbourke/fractals/dla/
[14] http://apricot.polyu.edu.hk/~lam/dla/dla.html```


[^0]:    Code copied from FORTRAN

[^1]:    ${ }^{+} h=6.626 \times 10^{-34}[\mathrm{~J} \cdot \mathrm{~s}]$

