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Abstract 

This study simulates random movement and aggregation of particles in two-dimensional 

space based upon both quantum and classical mechanics. Using an original computer 

program to perfoon the calculations, the objecti ve is to compare how quantum effects 

influence the random movement of a particle in comparison to the classical random 

movement. These effects are further studied by analyzing how the amassing of particles 

around a "seed" is affected by the differences in the random movement. Using the 

classical models that were generated as the basis of comparison, the initial results show 

that the quantum model aggregate grows at a slower ratc than the classical case. Also, the 

quantum model grows in a more amorphous manner than the clear branching of the 

classical example, In an effort to more accurately simulate the behavior of the probability 

function as it encounters other particles, both the quantum and classical models were 

adjusted, This yielded a quantum aggregation that developed more similarly than the 

classical modeL The primary difference in the quantum model was a noticeable lack of 

symmetry as the particles amassed around the seeded particles. It is possible that this 

iteration of the quantum model develops more rapidly then the classical model, though 

more simulations are needed to further test this. The effect other particles have on the 

development of the probability function also needs to be further ex.amined lo ensure that 

it is being modeled as accurately as possible. 
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Introduction 

Since its discovery and sUbsequent development, quantum mechanics has profoundly 

changed how many scientists view the natural world, particularly at the microscopic 

level. One of the centra] tenants of quantum mechanics is the superposition of states, 

which in essence acts as a superposition of realities for individual particles to exist in. To 

further explain how this is possible, a tiny particle such as an electron exhibits behavior 

similar to both a particle and a wave. Pioneered by scientists such as Niels Bohr and 

Louis Victor de Broglie, this wave-particle duality states that subatomic bodies exist in 

both states at the same time, and can therefore have the probability of existing in multiple 

places at the same instance. Standing waves provide the best model for this seeming 

contradiction. A standing wave has the greatest amplitude at the central location between 

the two fixed nodes, which corresponds to the location where the particle has the greatest 

probability of being located when measured, but other amplitudes of lesser value exist 

between the wave nodes. The Heisenberg Uncertainty Principle states that the accuracy 

of measuring a particle's state, such as its instantaneous position or momentum, is limited 

so that the product of both values' standard deviations is equal to a constant, --'.:.. , where h 
4n 

tis Planck's constant . Taking these two principles in combination, a pa.r1icle has the 

probability of being in multiple locations at any particular moment in time until it is 

physically measured, the value of which is accurate only in relation to the measurement 

of the momentum. 

t h = 6.626 X 10,34 II'S] 
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The movement of a particle based upon its two-dimensional probability wave establishes 

one of the main focuses of this study. Given a particle's initial position, it has a certain 

probability to move to another location within a certain distance in a wave-like manner. 

As the wave moves further from the initial location, it spreads out. Therefore the particle 

has a higher probability of moving to a nearby location, but larger steps are not 

discounted, just more improbable. These probability values become factors during the 

random walk process. 

Random walks, as the name implies, deal with the movement of an object wherein the 

location of each step is determined at random through some means. The simplest example 

of this is the movement of a particle along a line so that it can only move either to the left 

or to the right with each step. The flip of a coin randomly detennines which way the 

particle moves. The two-dimensional analog of this idea is sometimes referred to as a 

"drunken walk" because each small step is taken in a random direction, with one coin 

dictating forward or backward movement and another choosing left or right This is a 

plime example of a classical random walk because the movement is based upon 

Newtonian mechanics, which is demonstrated in the fact that the state of the particle does 

not affect how its movement progresses. A quantum random walk (QRW) would be 

similar in nature; however the internal state of the particle would influence the oulcome 

of the coin flip as well as the probability of the location for each step. Moreover, the 

paI1icie would occupy different locations at the same time in a wave-like manner. 

Cuurently, quanlum random walks are a relatively new field of study, as slated by Julia 

Kempe (2003). Existing research in this area focuses primarily in modeling quantum 
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random walks in one-dimensional space, with higher dimensions limited to mostly 

theoretical description, which is seen in work done by Mackay et al (2002). Random 

walks equate to a random exploration, which can be used, for example, to sample or 

explore large data structures. They also form the basis for many computer algorithms, so 

that a significant difference between QRWs and classical random walks may lead to the 

development of more powerful algorithms. 

Diffusion-limited aggregation (DLA) is a process in which randomly moving particles 

accumulate when they come in contact with a seed particle and, in time, with other 

amassed particles. This simple rule of motion leads to the formation of complex 

branching structures similar in nature to those found in the formation of snowflakes, 

trees, and coral reefs. These structures have self-similar patterns that repeat themselves at 

smaller and smaller scales, and are called fractals. Fractals are geometric figures that are 

said to have infinite detail, because as a fractal is divided into parts, each of the 

components has a shape and structure similar to the original image. The formation of 

these shapes via DLA is the other primary focus of this study. It aims to observe how a 

QRW affects fractal growth in comparison to a classical random walk. This visualization 

will help understand how random movement of a particle based upon quantum mechanics 

differs from classical movement. 
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Methodology 

The primary basis for the calculation of two-dimensional QRWs was put forth in the 

paper by Mackay et al (2003). A QRW is obtained by attributing an internal state to the 

particle that will undergo the random movement. Looking first at a one-dimensional walk 

for this study, the particle will have a spin-I/2 system with an internal Hilbert space Hiul = 

H2> with basis stateI£1 ) =I±)· For two-dimensional space, the Hilbert space gets 

extrapolated to Hint =H2 0H2, with basis statesIE\£2) =lEI) 01 £2)' wherelc,) =I±). This 

means that the particle can have either a positive or negative spin to it in either the first or 

second quantum bit (or gUbit). The positive or negative value in £1 or q will determine if 

the particle will move positively or negatively in its respective dimension, meaning fOUf 

resultant directions of motion. The spatial state of a two-dimensional lattice is denoted by 

Hspatial such that the Hilbert space is defined by the basis states Iij) =Ii) 01 j) , where i and 

j are both integers that define the location of the particle in two-dimensional discrete 

space. The total state of the panicle is therefore described by a state 

HT =Hspallal 0 Hinl'" (l) 

To simulate the cOin flip that determines particle movement, two separate unitary 

operators are used to first transform the internal state into a superposition of mUltiple 

states and then select the movement of the particle based upon the internal state. The 

Hadamard transformation is the first operator. For a one-dimensional QRW, the 

Hadamard transformation is of the form 

H- 1(1 1J- .,fi 1 - 1 ... (2) 

Extrapolating this for two-dimensional QRWs yields 
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1 111 

1 1 
H~ =H0H=­

~ 2 1 
-1 

1 

1 

-1 

-1 

-1 
... (3) 

1 -1 -1 1 

This transfonnation acts solely on the intemal slate of the particle. The internal states 

created by a two-dimensional system and their resulting supellJositions are detailed below 

in Table 1. 

Internal 

State 

Shorthand 

Label 
Superposition 

11+ +)1 1 I~~+ +}+ 1+-)+ 1--)+ 1- +})I 

[3 2 I+~+ +} -1+ -}+ 1- -)-1- +})I 

0 3 I+~+ +)+ 1+ -)-1--)-1- +»1 

[8 4 I~ ~+ +}-I+ -)-1- -}+ 1- +})! 

Table 1: Internal States and Their Post-Hadamard Superpositions 

After applying the Hadamard transformation to the particle, a unitary operator. F, is then 

utilized to move the position of the particle based upon its internal state. The F is defined 

as 

F~i, J) 01+ +)) =Ii, j +1) 01++) 
F~i, j) 01+ -))= Ii +1, j) 01+-) 
F~i,j)@I--))=li,j-l)@I--) ... (4) 

F~ i, j) 01- +)) = Ii -1, j)@I-+) 



9 

Thus, for internal state 1+ +) the particle moves one space up, for 1+ -) it moves to the 

right, down forl- -) , and to the left for internal statel- +). It should be noted that these 

movements are assigned for each of the four possible internal state combinations rather 

than simply using one qubit value for movement in the x-direction and one for movement 

in the y-direction. This was done to have the particle move either vertically or 

horizontally each time rather than always in one of four diagonal directions. In addition, 

the F operator does not alter the internal state of the particle, but rather transfonns the 

superposition state into a superposition state of a particle that has moved in one of the 

four cardinal directions. The two operators are used in this alternating manner each 

iteration, causing the spatial and internal degrees of freedom to become entangled. 

These calculations were perfonned using onginal FORTRAN code that was run on a 

UNIX-based computer. The development of the code occurred in stages. After writing an 

initial program to simulate the QRW, it was modified to simulate a classical random 

walk. This allowed for generation of a basis to compare the QRW to. Upon fine-tuning 

the classical walk program, the quantum model program was further amended. 

The pmticle was simulated by having a value of one at a location in an empty three­

dimensional matrix, the first two coordinates defining the location and the third location 

defining the internal state. For example, a value of one at location (9, 13, 3) meant that a 

particle located at x-coordinate 9 and y-coordinate 13 had an internal state of 1- -) .The 

starting location of the particle is selected using a random number generator. The 

generator selects a number between zero and one, which is then multiplied by the 



10 

maximum location value of the matrix (in a 99 x 99 matrix, the random number is 

multiplied by 99) and then rounded to the nearest integer. The particles always begin with 

an internal state ofl ++) . After the initial location is selected, the Hadamard and F 

operators are performed in an alternating manner on the location matrix. As the operators 

progress through the individual matrix elements, the changes they enact are reflected in a 

secondary location matrix so as to not influence the calculations being perfOlmed on the 

initial matrix. Once the operator has acted upon the whole matrix, it is set equal to the 

secondary matrix, which is then reset to zero. This is necessary because the operators are 

dependent upon the values in the locations at the same time they are changing the values 

of adjacent locations so as to simulate the propagation of the probability wave. The 

changes are made in the secondary matrix so as to not affect the current iteration of the 

operations. 

To calculate the probability of a particle selecting a location, the square of the values in 

each state are summed for a given location. After n iterations of alternately applying the 

two operators, the particle is in an entangled statel "1',,) E H T , so the probability that it is 

found in location ( i, j ) is given by the equation 

P, = I((i, JI@(+ +1~'P"t +1((i,JI@(+-I)'¥"t 
2 2 ... (5) 

+ I((i, jl @(- -I) \}In)1 +1((i,)1 @(- +1) '¥,,)I 

Although the intemal state of the particle influences how its probability of relocation 

develops, it is not important for the actual selection of the location. The probability 

values are then stored in another matrix with values corresponding to their respective 

positions in the location matrix. Summing all the values in the probability matl1x checks 
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that the total probability of the system remains at one, ensuring that the particle must go 

somewhere. Also, as the probability wave reaches the edges of the matrix, it wraps itself 

around to the other side, creating a sort of miniature globe that it walks over. A particle in 

the upper most location that will have a probability of moving upwards despite no place 

to go has that probability transferred to the location at the bottom of that same column. 

The random selection of the location is done by taking the probability matrix and making 

each element equaJ to the sum of the elements up to and including it. A random number is 

generated, and the first element encountered to be greater than the random number 

becomes the chosen location for the particle. Consider a 3 x 3 probability matrix with 

particle located in the center having gi yen probabilities of moving to the surrounding 

locations: 

o.OS 0.20 
0.05J

[p] = 0.20 0.00 0.20 

r0.05 0.20 0.05 

The probability matrix then becomes 

O.OS 0.25 0.30J 
[p]= 0.50 0.50 0.70 

r0.75 0.95 1.00 

Looking at the elements row by row, a randomly generated number of 0.67953 would 

first encounter an element greater than itself at P(3,2). The coordinate (3,2) would then 

become the location selected for the particles random movement. 
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Since applying the QRW to diffusion-limited aggregation (DLA) is the ultimate goal, the 

random selection of locations is taken a step further. OLA looks at how groups fonn as 

randomly moving particles cluster together. The program emphasizes this by initializing 

the clustering with a "seed" in the matrix that maintains the final selected locations. A 

group of locations are selected at the beginning of the program a 6 x 6 square located just 

off the center of the selected location matrix. If the location randomly selected does not 

lay adjacent to a location that is already occupied, then the particle is discarded and a new 

particle begins the process all over again. Initially, these particles will be encountering 

only the seeded locations, but over time the amassed particles take on their own shape. 

For the classical case, this system aJ] remains the same, with the exception that the Hand 

F operators are only applied once to the particle before choosing a new location, gi ving it 

a 0.25 probability of moving to each of the four surrounding locations: up, right, down, 

and left. The primary difference between the models is that the particle is allowed to take 

a designated number of steps so that it has the opportunity to aggregate with the seeded 

particles. After so many steps have been taken, in this case 1,000, without coming in 

contact with other particles, it is discarded and another particle begins the process again. 

As with the probability calculations, the matrix space wraps in on itself. Therefore, if a 

particle is at the edge of the matrix and wants to move to a location not defined in the 

matrix, it finds itself on the other side. 

After the initial results, both the quantum and the classical programs were modified to 

change how the probability function behaves when it encounters other particles, as well 
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as slightly increase the chances of particles encountering each the initial seed. Instead of 

randomly beginning anywhere within the matrix, the particles randomly appear on a 

circular boundary that is defined around the perimeter of the matrix. This is done to make 

the initial distance from the aggregate the same for all particles, only varying their 

position as a function an angle and not a radial distance. 

In the previous model for both the classical and quantum cases, as the probability 

function developed it reflected off of any of the aggregate that it encountered. This 

caused the probability to cluster together in particular areas in between arms of the 

amassed particles. In an effort to counteract this, the second iteration of the model would 

allow for the selection of a location once the probability function encounters another 

particle. If the randomly selected location was not immediately next to that particle, the 

probability for the particle being in that specific location was set to zero and the other 

location probabilities were adjusted accordingly. This equates to taking a measurement 

and definitively finding that a particle was n.ot located in the spot being examined, so the 

possibility of it being located in the other locations is increased just a little bit. Once this 

cheek is performed, the probability function Is alJowed to grow as before until it 

encounters another paJ1icle. 
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Results 

The initial iterations of the quantum and classical models yield visibly different trends in 

the aggregate growth, The particle clusters generated by the classical model display the 

beginni ngs of common fractal growth. The particles are extending from their respecti ve 

seeds in a branching fashion. 
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Figure 1: Classical DLA with 1,000 Particles 
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Figure 2: Classical DLA with 1,000 Particles 

Both Figure 1 and Figure 2 are consistent with the shapes generated from classical 

random walk DL.A. These shapes, commonly referred to as Brownian trees, have fairly 



evenly distributed branching in all directions around the central seed, which is located at 

the center of each of the growths. This supports that the classical model is working as it 

should by producing results consistent with established findings. 

The data gathered from the quantum simulations show a greatly different pattern of 

growth. Simulations that allow 1,000, 2,500 and 5,000 indi vidual particles a chance to 

aggregate all show clusters that do not branch of as dramatically as the classical case. 
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Figure 3: Quantum DLA with 1,000 Particles 
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~ Figure 5: Quantum DLA with 5,000 Particles 

Figures 3-5 each illustrate a model that grows in a more amorphous manner rather than 

classical simulation. This is promising, because it supports the fact that the quantum 

effects of the particle have a prevalent impact on how the particles move around and 

amass together. Also, the simulation that only runs 1,000 particles, the same amount as in 

the two classical simulations, shows that the quantum aggregation does not appear to 

happen as quickly as the in the classical case. However, it is possible that the different 

pattern of growth occurs because the probability function is getting confined in areas as it 

reflects of aggregated particles. This would cause a disproportionately high probability in 

certain areas which may not be consistent with how the behavior would naturally occur. 

The second version of both models attempts to take this into account as described above 

and has yielded distinctly different results for the quantum model, though the classical 

model remains similar in nature to the expected out come. 

..
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Figure 6: Classic DLA with 4,000 Particles 
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Figure 7: Classic DLA with 4,000 Particles 

The above results still display development similar to the expected Brownian trees, 

though the aggregate in Figure 6 does not have very symmetric growth. The aggregate 

has spread out so far that the circular perimeter where the particles begin is identifiable. 

As the amassed particles approach closer to the starting location, the particles have a 

greater chance of attaching to the aggregate. Therefore, Figure 6 may not display the 

most favorable classical conditions. Figure 7, on the other hand, display results more 

consistent with those expected. 
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The quantum model results from the second iteration of the programs display 

development more similar to the classical model than in the previous model. 
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Figure 9: Quantum DLA with 4,000 Particles 

Figure 8 and Figure 9 show aggregates that are drastically more similar to the classical 

Brownian tree model. The thin branching that occurs rather than the amorphous growing 

that occurred in the previous quantum model suggests that the clustering of the 

probability function may have been a factor in the previous difference in the growth 

pattern. This may occur because as specific locations are discounted from having 
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particles located there, the probability function approaches a more classical model given 

enough steps develop. These quantum models also appear to grow at a rate comparable to 

the classical models in this iteration of the programs. All simulations simulated a total of 

4,000 particles and yielded similar sized structures. However, if the first classical 

simulation (Figure 6) is to be considered somewhat of an anomaJ y for approaching the 

boundary, it could be considered that the quantum model grew more rapidly in 

comparison to the results seen in Figure 7. Another trend to note in these results is that 

both of the quantum models in the second round of simulations tend to grow downward 

rather than symmetrically around the seed. This is most likely due to the fact that as the 

probability function develops for a particle initiaJly in the 1+ +) state, it does not grow 

symmetrically about the central starting location. One way to counteract this in future 

study would be to randomly select the initial state of the particle as well as its location. 
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Conclusions 

Judging from the data obtained thus far, it can be seen that the quantum effects of the 

particle have the ability to playa significant role in influencing how the particles move 

randomly about in two-dimensional space. The degree of these effects is dependent upon 

the accuracy of the modeling of the quantum effects and the development of the 

probability function. In the preliminary batch of simulations, this difference in random 

movement in turn affects how the particles aggregate around the seed. The quantum 

models depict more centralized gathering of the particles. The amassed particles seen 

here do not appear to form in a traditional fractal-like manner, though this may be 

because it takes longer for the pattern to develop or emerge. It may also be due to the 

probability function growing disproportionately in certain areas as it reflects off the 

amassed particles. The simulation that run 5,000 particles already displays some 

branching, though they tend to favor the one side of the aggregate rather than developing 

symmetrically like the classical model. This is most likely due to the fact that the 

quantum locations are being selected via a probability wave that is spreading out from a 

randomly selected location and is effectively only being allowed to take one big step. The 

classical model allows the particle to take numerous small steps, in these simulations as 

many as 1000, to come in contact with the seed and other particles. Also, the first set of 

quantum model results appear to grow at a slower rate than the classical models. This 

might imply that the random movement based on quantum mechanics is not as conducive 

to amassing of particles in this manner. 

The second set of models display more similar trends, though more simulations will need 

to be run before any more concrete conclusions can be extrapolated. Both the classical 



and quantum models develop at comparable rates, though if the first classical model is 

not indicative of the regular behavior, it is possible that the quantum model actually 

develops more quickly in this instance. Also, the quantum model is displaying a tendency 

to develop favoring one side of the seed rather than symmetrically about it. This is most 

likely do to the asymmetrical probability function which should be taken into account by 

randomly selecting the initial state of the particles. The bunching of the particles into 

amorphous growths appears to have been offset by the changes to the program, in tum 

displaying development much more similar to the classical model. 

The differences between the classical and quantum models are clearly observed in these 

simulations, although those differences are dissimilar between the two models. For future 

study, the behavior of the probability function as it develops and comes into contact with 

other particles needs to be examined more closely to ensure that the model is simulated 

the actual behavior as accurately as possible. As this is better understood, the programs 

can be modified to represent the systems faithfully and provide more decisive 

conclusions on the difference between the quantum and classical models. 
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Appendix of Tables & Figures 

Internal 
State 

Shorthand 
Label 

Superposition 

11+ +)1 1 I~ ~++)+I+ -)+1- +1- +))1 

B 2 I: ~+ +)-1+ -)+1--)-1- +))1 

OJ 3 I+~+ +)+1+ -)-1- -)-1- +))1 

8 4 I+~+ +)-1+ -)-1- -)+ 1- +))1 
Table AI: Internal States and Their Post-Hadamard Superpositions 
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First Quantum Model Program Code 

PROGRAM quantum2 

C------------------------------------------------------------------C 
C C 
C PROJECTION C 
C C 
C This program aims to simulate random movement C 
C of a particle based upon quantum mechanics and C 
C take into account the internal states of the particles. C 
C C 
C------------------------------------------------------------------C 
C C 
C PARAMETERS C 
C C 
C LOC = LOCATION MATRIX C 
C STP = STEP NUMBER C 
C BIIGSTEP = NUMBER OF PARTICLES C 
C STPMAX = MAXIMUM NUMBER OF OPERATOR ITERATIONS C 
C SEED2 = SEED LOCATIONS C 
C PROB = PROBABILITY MATRIX C 
C CHX = CHOSEN LOCATION C 
C SUM = CHECK TO ENXURE THAT TOTAL PROBABILITY IS 1 C 
C SUMT = USED IN CONJUNCTION WITH 'SUM' C 
C NN = DEFINES MATRIX SIZE C 
C STRT = DEFINES CENTER OF MATRIX C 
C DLA = MATRIX OF CHOSEN LOCATIONS C 
C NEIGHBORS = KEEPS TRACK OF LOACTIONS WITH NEIGHBORS C 
C FLAG = CHECKS FOR NEIGHBOR PARTICLES C 
C C 
C------------------------------------------------------------------C 

IMPLICIT REAL *8 (A-H,O-Z) 
INTEGER STP,SEED2,NN,DLA(99,99},BIGSTEP,II,JJ 
INTEGER NEIGHBORS (99,99l 
INTEGER SEED,IIp,IIm,JJp,JJm,FLAG,STPMAX 
REAL *8 PROB(99,99) ,CHX,SUM,LOC1(99,99,4),LOC2(99,99,4) 
REAL *8 SUMT 
OPEN(4,FILE='quantumspot2.dat' ,STATUS='UNKNOWN') 

C------------------------------C 
C SET DEFAULT PARAMETERS C 
C------------------------------C 

ZERO = O.ODO
 
ONE = 1.0DO
 
SUM = ZERO
 
NN = 99
 
SEED2 = 47
 
STP = 0
 
BIGSTEP = 0
 
STPMAX=30
 

C------------------------------------------C 
C INITIALIZE RANDOM NUMBER GENERATOR C 
C------------------------------------------C 

SEED=TIME ()
 
CALL=RAND (SEED)
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C-------------------------------------C 
C INTERNAL STATE DEFINITIONS C 
C C 
C 1 = ++ MOVE UP ONE STEP C 
C 2 = +- MOVE RIGHT ONE STEP C 
C 3 = -- MOVE ONE STEP DOWN C 
C 4 = -+ MOVE ONE STEP LEFT C 
C C 
C-------------------------------------C 

C-----------------------------C 
C SET LOCATION MATRICES C 
C-----------------------------C 

DO 10 I=l/NN,+l
 
DO 11 J=l,NN,+l
 
DO 12 K=1,4,+1
 

LOC1(I,J,K)=ZERO
 
LOC2(I,J,K)=ZERO
 

12 CONTINUE
 
DLA(I,J)=O
 

11 CONTINUE
 
10 CONTINUE
 

LOCI (INT(RAND(O) *NN) ,INT(RAND(O)*NN) ,1) = ONE 

DO 1=0,5
 
DO J=0,5
 

DLA(SEED2+I, SEED2+J)=1
 
END DO
 
END DO
 

DO WHILE (BIGSTEP.LT.1000) 
C---------------------------------C
 
C Update Neighbors matrix C
 
C---------------------------------C
 

DO 807 I=l,NN,l
 
DO 808 J=l,NN,l
 

NEIGHBORS (I,J)=0
 
808 CONTINUE
 
807 CONTINUE
 

DO 707 I=l,NN,l
 
DO 708 J=l,NN,l
 

IF (DLA(I,J) .NE.O) THEN
 
IF (I.LT.NN) THEN
 

IIp=I+1
 
ELSE
 

IIp=l
 
ENDIF
 
IF (J.LT.NN) THEN
 

JJp=J+1
 
ELSE
 

JJp=l
 
ENDIF
 
IF (I.GT.1) THEN
 

IIm=I-1
 
ELSE
 

IIm=99
 
ENDIF
 
IF (J.GT.1) THEN
 

JJm=J-1 
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ELSE 
JJm=99
 

ENDIF
 
NEIGHBORS(IIp,J) 1
 
NEIGHBORS (IIm,J) 1
 
NEIGHBORS(I,JJp) 1
 
NEIGHBORS (I,JJm) 1
 

ENDIF
 
708 CONTINUE
 
707 CONTINUE
 

DO WHILE (STP.LT.STPMAX) 

C-------------------------------C 
C Evolve wave function C 
C-------------------------------C 
C HADAMARD TRANSFORMATION C 
C-------------------------------C 

DO 607 1=1, NN, 1
 
DO 608 J=1,NN,1
 
DO 609 K=1, 4
 

LOC2(I,J,K)=0
 
609 CONTINUE
 
608 CONTINUE
 
607 CONTINUE
 

DO 20 I=1,NN,+1
 
DO 21 J=1,NN,+1
 
DO 22 K=1,4,+1
 

IF (LOC1(I,J,K) oNE.O.ODO} THEN 
IF (K.EQo100DO) THEN 

LOC2(I,J,1)=LOC2(I,J,1}+LOC1(I,J,K) 
LOC2(I,J,2)=LOC2(I,J,2}+LOC1(I,J,K) 
LOC2(I,J,3)=LOC2(I,J,3}+LOC1(I,J,K) 
LOC2(I,J,4}=LOC2(I,J,4)+LOC1(I,J,K) 

ELSEIF (K.EQ.2.0DO) THEN 
LOC2(I,J,1}=LOC2(I,J,1)+LOC1(I,J,K} 
LOC2(I,J,2}=LOC2(I,J,2}-LOC1(I,J,K} 
LOC2(I,J,3}=LOC2(I,J,3}+LOC1(I,J,K) 
LOC2(I,J,4)=LOC2(I,J,4}-LOC1(I,J,K) 

ELSEIF (K oEQ.3.0DO) THEN 
LOC2(I,J,1)=LOC2(I,J,1)+LOC1(I,J,K) 
LOC2(I,J,2)=LOC2(I,J,2)+LOC1(I,J,K) 
LOC2(I,J,3)=LOC2(I,J,3)-LOC1(I,J,K) 
LOC2(I,J,4)=LOC2(I,J,4)-LOC1(I,J,K) 

ELSE 
LOC2(I,J,1}=LOC2(I,J,1)+LOC1(I,J,K} 
LOC2(I,J,2}=LOC2(I,J,2)-LOC1(I,J,K} 
LOC2(I,J,3}=LOC2(I,J,3)-LOC1(I,J,K} 
LOC2(I,J,4}=LOC2(I,J,4)+LOC1(I,J,K) 

END IF 
ENDIF
 

22 CONTINUE
 
21 CONTINUE
 
20 CONTINUE
 

DO 23 I=1,NN,+1
 
DO 24 J=1,NN,+1
 
DO 25 K=1,4,+1
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LOC1(I,J,K)=LOC2(I,J,K)/(2.0DO) 
OC2(I,J,K)=ZERO
 

25 CONTINUE
 
24 CONTINUE
 
23 CONTINUE
 

C------------------C 
C F OPERATOR C 
C------------------C 

DO 30 I-=l,NN,+l
 
DO 31 J=l,NN,+l
 

IF (I.LT.NN) THEN
 
IIp=I+1
 

ELSE
 
IIp=l
 

ENDIF
 
IF (J.LT.NN) THEN
 

JJp=J+1
 
ELSE
 

JJp=l
 
ENDIF
 
IF (I.GT.1) THEN
 

IIrn=I-1
 
ELSE
 

IIrn=99
 
ENDIF
 
IF (J.GT.1) THEN
 

JJrn=J-1
 
ELSE
 

JJrn=99
 
ENDIF
 

DO 32 K=1,4,+1
 
IF (LOC1(I,J,K) .NE.O.ODO) THEN
 

IF (K.EQ.1) THEN
 
IF (DLA(I,JJp) .EQ.O) THEN 

LOC2(I,J,K)=ZERO 
LOC2(I,JJp,K)=LOC2(I,JJp,K)+LOC1(I,J,K) 

ELSE
 
LOC2(I,J,K)=LOC1(I,J,K)
 

ENDIF
 
ENDIF
 

IF (K.EQ.2) THEN 
IF (DLA(IIp,J) .EQ.O) THEN 

LOC2(I,J,K)=ZERO 
LOC2(IIp,J,K)=LOC2(IIp,J,K)+LOC1(I,J,K) 

ELSE
 
LOC2(I,J,K)=LOC1(I,J,K)
 

ENDIF
 
ENDIF
 

IF (K.EQ.3) THEN 
IF (DLA(I,JJrn) .EQ.O) THEN 

LOC2(I,J,K)=ZERO 
LOC2 (I,JJrn,K)=LOC2 (I,JJrn,K)+LOC1(I,J,K) 

ELSE
 
LOC2(I,J,K)=LOC1(I,J,K)
 

ENDIF
 
ENDIF
 

IF (K.EQ.4) THEN 



IF (DLA(IIm,J) .EQ.O} THEN 
LOC2{I,J,K)=ZERO 
LOC2{IIm,J,K}=LOC2{IIm,J,K)+LOC1(I,J,K) 

ELSE 
LOC2(I,J,K)=LOC1(I,J,K) 

ENDIF 
ENDIF 

ENDIF 
32 CONTINUE 
31 CONTINUE 
30 CONTINUE 

00 33 I=l,NN,+l 
DO 34 J=l,NN,+l 
00 35 K=1,4,+1 

LOC1(I,J,K)=LOC2(I,J,K} 
35 CONTINUE 
34 CONTINUE 
33 CONTINUE 

C---------------------------------------------------------C 
C CALCULATE MATRIX FOR PROBABILITY IN EACH LOCATION C 
C---------------------------------------------------------C 

DO 40 I=l,NN,+l 
00 41 J=l,NN,+l 

PROB(I,J}=ABS(LOC1(I,J,1))**2+ABS(LOC1(I,J,2})**2+ 
1 ABS(LOC1(I,J,3)**2+ABS(LOC1(I,J,4)}**2 

PROB(I,J}=PROB(I,J)*NEIGHBORS(I,J}*(l-DLA(I,J)} 
41 CONTINUE 
40 CONTINUE 

C SUMT=ZERO 

C 00 50 1=1, NN,+l 
C 00 52 J=l,NN,+l 
C SUMT=SUM+PROB(I,J} 
C 52 CONTINUE 
C 50 CONTINUE 

C---------------------------------------------------------C 
C SET PROB MATRIX FOR CHOOSING LOACTION C 
C---------------------------------------------------------C 
C Each location has a probability of the particle C 
C choosing that spot. The probability of each C 
C location will now be changed to a value so that C 
C the probability is represented by the range C 
C between the location and the location before it. C 
C The total range is from 0 to 1, and the range C 
C will be assigned row by row. C 
C---------------------------------------------------------C 

SUM=ZERO 

00 60 I=l,NN,+l 
00 61 J=l,NN,+l 

IF (PROB(I,J) .NE.ZERO} THEN 
SUM =SUM+ PROB (I,J) 
PROB(I,J) =SUM 

ENDIF 
61 CONTINUE 
60 CONTINUE 
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C--------------------------------------------------------------C 
C CHOOSE LOCATION C 
C--------------------------------------------------------------C 
C Use random number generator to get a random value. C 
C The location chosen by the particle will be decideded C 
C by the ranges now defined in the matrix PROB. If the C 
C number is less than the value in a location, but C 
C greater than the number in the previous location, it C 
C comes to rest in the current location. C 
C--------------------------------------------------------------C 

CHX=RAND(O}
 
FLAG = 0
 

DO 70 I=l,NN,+l
 
DO 71 J=l,NN,+l
 

IF (CHX.LT.PROB(I,J}) THEN
 
11=1
 
JJ=J
 
FLAG=l
 
GOTO 888
 

ENDIF
 
71 CONTINUE
 
70 CONTINUE
 

888 CONTINUE 

C--------------------------------------------------------C 
C This section dictates the location selection C 
C based upon previously selected spots. If a C 
C spot is already full, the surrounding spots are C 
C randomly selected based upon whether they are C 
C already occupied or not. C 
C--------------------------------------------------------C 

IF (FLAG.EQ.l) THEN
 
print *, II,JJ, "FOUND"
 
DLA (II,JJ) = 1
 
STP=STPMAX
 

C-----------------------------------------C 
C Particle keeps moving if it does C 
C not meet an occupied location. C 
C-----------------------------------------C 

ELSE
 
STP=STP+l
 

ENDIF
 
ENDDO
 
STP=O
 
print * BIGSTEP
 
BIGSTEP=BIGSTEP+l
 

DO 1080 I=l,NN,+l
 
DO 1081 J=l,NN,+l
 
DO 1082 K=1,4,+1
 

LOCl(I,J,K}=ZERO
 
1082 CONTINUE
 
1081 CONTINUE
 
1080 CONTINUE
 



LOCl(INT(RAND(O)*NN),INT(RAND(O)*NN) ,1) = ONE 

ENDDO 

C---------------------------C 
C WRITE IN DATA FILE C 
C---------------------------C 

DO 90 I=l,NN,+l
 
DO 91 J=l,NN,+l
 

IF (DLA(I,J) .NE.O) THEN
 
WRITE(4,S)I,J
 

ENDIF
 
91 CONTINUE
 
90 CONTINUE
 

CLOSE(4) 

STOP 
1 FORMAT(' '.lX,F12.4,' ',lX.IS.' '.lX,F9.6) 
2 FORMAT ( ",6X, 'X'," ,6X, 'y'." ,4X, 'VALUE') 
3 FORMAT(' ·,lx.F9.6, ',lx,F9.6,' ',lx,F9.6, ',lx,F9.6, 

1 ',lx,F9.6, ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6, 
2 ',lx.F9.6,' ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6, 
3 '.lx,F9.6,' ',lx,F9.6,' ',lx,F9.6.' ',lx,F9.6, 
4 ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6. ',lx,F9.6, 
S '.lx,F9.6,' ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6, 
6 ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6, 
7 ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6, 
8 ',lx.F9.6,' ',lx,F9.6,' ',lx,F9.6) 

4	 FORMAT (' ,IS, ' , • IS, ',IS, ' , , IS, ' , , IS. 
1 II,I5,1',I5, ·,IS/·I/IS/II/IS, 

2 ",lX,IS. ,1X,IS, ",lX,IS,".lX,IS, ',lX,IS, 
3 ",lX,IS.' '.lX,IS,' ',lX,IS,' '.lX,IS," ,1X,IS, 
4 ",lX,IS,' ',lX,IS,' ',lX,IS,' ',lX,IS,' ',lX,IS, 
S ",lX,IS,' '.lX,IS," ,1X,IS," ,1X,IS,' ',lX,IS. 
6 ,1X,IS,",lX,IS.",lX,IS, ',lX,IS,",lX,IS) 

S	 FORMAT ( • ,IX, 19, I' ,IX, 19)
 
END
 



First Classical Model Program Code 

PROGRAM classic2 

C------------------------------------------------------------------C 
C C 
C PROJECTION C 
C C 
C This program aims to simulate random movement C 
C of a particle based upon quantum mechanics and C 
C take into account the internal states of the particles. C 
C Using the quantum model, it aims to simulate a classical C 
C random walk by selecting a location after itereation. C 
C C 
C------------------------------------------------------------------C 
C C 
C PARAMETERS C 
C C 
C LOC = LOCATION MATRIX C 
C BIGSTEP = NUMBER OF PARTICLES C 
C STEPMAX = NUMBER OF STEPS PARTICLE CAN TAKE C 
C STP = STEP NUMBER C 
C PROB = PROBABILITY MATRIX C 
C CHX = CHOSEN LOCATION C 
C SUM = CHECK TO ENXURE THAT TOTAL PROBABILITY IS 1 C 
C NN = DEFINES MATRIX SIZE C 
C SEED2 = SEED LOCATION C 
C DLA = MATRIX OF CHOSEN LOCATIONS C 
C FLAG = CHECKS FOR NEIGHBORING PARTICLES C 
C C 
C------------------------------------------------------------------C 

IMPLICIT REAL *8 (A-H,O-Z)
 
INTEGER STP, SEED2 ,NN, ,DLA{99,99} ,BIGSTEP,II,JJ
 
INTEGER SEED,STEPMAX,IIp,IIm,JJp,JJm,FLAG
 
REAL *8 PROB(99,99},CHX,SUM,LOC1(99,99,4},LOC2(99,99,4}
 
OPEN(1,FILE='c2.dat' ,STATUS='UNKNOWN'}
 
OPEN(2,FILE='c2prob.dat',STATUS='UNKNOWN')
 
OPEN(3,FILE='c2spot.dat' ,STATUS='UNKNOWN')
 
OPEN(4,FILE='c2spot3.dat' ,STATUS='UNKNOWN')
 

C------------------------------C 
C SET DEFAULT PARAMETERS C 
C------------------------------C 

ZERO = O.ODO 
ONE = 1.0DO 
SUM = ZERO 
NN = 99 
STRTY (NN+1) 12 
STRTX (NN+1) 12 
SEED2 47 
STP = 0 
BIGSTEP o 
STEPMAX 1000 

C------------------------------------------C 
C INITIALIZE RANDOM NUMBER GENERATOR C 
C------------------------------------------C 

SEED=TIME ( )
 
CALL=RAND (SEED)
 

33 
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C-------------------------------------C 
C INTERNAL STATE DEFINITIONS C 
C C 
C 1 = ++ MOVE UP ONE STEP C 
C 2 = +- MOVE RIGHT ONE STEP C 
C 3 = -- MOVE ONE STEP DOWN C 
C 4 = -+ MOVE ONE STEP LEFT C 
C C 
C-------------------------------------C 

C-----------------------------C 
C SET LOCATION MATRICES C 
C-----------------------------C 

DO 10 I=l,NN,+l
 
DO 11 J=l,NN,+l
 
DO 12 K=l,4,+1
 

LOC1(I,J,K)=ZERO
 
LOC2(I,J,K)=ZERO
 
DLA(I,J)=O
 

12 CONTINUE
 
11 CONTINUE
 
10 CONTINUE
 

LOC1(INT(RAND(0)~NN) ,INT(RAND(O)*NN) ,I) = ONE 

DO 14 1=0,5,+1
 
DO 15 J=O,5,+1
 

DLA(SEED2+I,SEED2+J)=1
 
15 CONTINUE
 
14 CONTINUE
 

C-------------------------------C 
C HADAMARD TRANSFORMATION C 
C-------------------------------C 

DO WHILE (BIGSTEP.LT.1000)
 
DO WHILE (STP.LT.STEPMAX)
 

SUM=ZERO 

DO 20 I=l,NN,+l
 
DO 21 J=l,NN,+l
 
DO 22 K=l,4,+1
 

IF (LOC1(I,J,K) .NE.O.ODO) THEN 
IF (K.EQ.1.0DO) THEN 

LOC2(I,J,l)=LOC2(I,J,1)+LOC1(I,J,K) 
LOC2(I,J,2)=LOC2(I,J,2)+LOC1(I,J,K) 
LOC2(I,J,3)=LOC2(I,J,3)+LOC1(I,J,K) 
LOC2(I,J,4)=LOC2(I,J,4)+LOC1(I,J,K) 

ELSEIF (K.EQ.2.0DO) THEN 
LOC2(I,J,l)=LOC2(I,J,1)+LOC1(I,J,K) 
LOC2(I,J,2)=LOC2(I,J,2)-LOC1(I,J,K) 
LOC2(I,J,3)=LOC2(I,J,3)+LOC1(I,J,K) 
LOC2(I,J,4)=LOC2(I,J,4)-LOC1(I,J,K) 

ELSEIF (K.EQ.3.0DO) THEN 
LOC2(I,J,l)=LOC2(I,J,1)+LOC1(I,J,K) 
LOC2(I,J,2)=LOC2(I,J,2)+LOC1(I,J,K) 
LOC2(I,J,3)=LOC2(I,J,3)-LOC1(I,J,K) 
LOC2(I,J,4)=LOC2(I,J,4)-LOC1(I,J,K) 

ELSE 
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LOC2(I,J,1)=LOC2(I,J,1)+LOC1(I,J,K) 
LOC2(I,J,2)=LOC2(I,J,2)-LOC1(I,J,K) 
LOC2(I,J,3)=LOC2(I,J,3)-LOC1(I,J,K) 
LOC2(I,J,4)=LOC2(I,J,4)+LOC1(I,J,K) 

ENDIF 
ENDIF
 

22 CONTINUE
 
21 CONTINUE
 
20 CONTINUE
 

DO 23 I=1,NN, +1
 
DO 24 J=1,NN, +1
 
DO 25 K=1,4,+1
 

LOC1(I,J,K)=LOC2(I,J,K)/(2.0DO)
 
LOC2(I,J,K)=ZERO
 
PROB(I,J)=ZERO
 

25 CONTINUE
 
24 CONTINUE
 
23 CONTINUE
 

C------------------C 
C F OPERATOR C 
C------------------C 

DO 30 I=1,NN,+1
 
DO 31 J=1,NN,+l
 
DO 32 K=1,4,+1
 

IF (LOC1(I,J,K) .NE.O.ODO) THEN
 
LOC2(I,J,K)=ZERO
 
IF (K.EQ.1.0DO) THEN
 

IF (J+1.LE.NN) THEN 
LOC2(I,J+1,K)=LOC2(I,J+1,K)+LOC1(I,J,K) 

ELSE 
LOC2(I,1,K)=LOC2(I,1,K)+LOC1(I,J,K) 

ENDIF 

ELSEIF (K.EQ.2.0DO) THEN 
IF (I+1.LE.NN) THEN 

LOC2(I+1,J,K)=LOC2(I+1,J,K)+LOC1(I,J,K} 
ELSE 

LOC2(1,J,K)=LOC2(1,J,K)+LOC1(I,J,K) 
ENDIF 

ELSEIF (K.EQ.3.0DO) THEN 
IF (J-1.GE.0) THEN 

LOC2(I,J-1,K)=LOC2(I,J-1,K}+LOC1(I,J,K} 
ELSE 

LOC2(I,NN,K)=LOC2(I,NN,K)+LOC1(I,J,K) 
ENDIF 

ELSE 
IF (I-1.GE.0) THEN 

LOC2(I-1,J,K)=LOC2(I-1,J,K}+LOC1(I,J,K) 
ELSE 

LOC2(NN,J,K)=LOC2(NN,J,K)+LOC1(I,J,K} 
ENDIF 

ENDIF 
ENDIF
 

32 CONTINUE
 
31 CONTINUE
 
30 CONTINUE
 

DO 33 I=l,NN, +1 



C---------------------------------------------------------C 
C CALCULATE MATRIX FOR PROBABILITY IN EACH LOCATION C 
C---------------------------------------------------------C 

DO 34 J=1,NN,+1 
DO 35 K=1,4,+1 

LOCl(I,J,K)=LOC2(I,J,K) 
35 CONTINUE 
34 CONTINUE 
33 CONTINUE 

DO 40 1= 1, NN, + 1 
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DO 41	 J=1,NN,+1 
PROB(I,J)=ABS(LOC1(I,J,1))**2+ABS(LOC1(I,J,2))**2+ 

1 ABS(LOCl(I,J,3))**2+ABS(LOC1(I,J,4))**2 
41 CONTINUE 
40 CONTINUE 

DO 50 1=1, NN, +1
 
DO 52 J=1,NN,+1
 

SUM=SUM+PROB(I,J)
 
52 CONTINUE
 
50 CONTINUE
 

c DO 90 I=l,NN,+l 
c DO 91 J=l,NN, +1 
c WRITE(4,S)I,J,PROB(I,J) 
c9l CONTINUE 
c 90 CONTINUE 

C---------------------------------------------------------C 
C SET PROB MATRIX FOR CHOOSING LOACTION C 
C---------------------------------------------------------C 
C Each location has a probability of the particle C 
C choosing that spot. The probability of each C 
C location wil now be changed to a value so that C 
C the probability is represented by the range C 
C between the location and the location before it. C 
C The total range is from 0 to 1, and the range C 
C will be assigned row by row. C 
C---------------------------------------------------------C 

SUM=ZERO 

DO 60 I=1,NN,+1
 
DO 61 J=1,NN,+1
 

IF (PROB(I,J] .NE.ZERO) THEN
 
SUM=SUM+PROB(I,J)
 
PROB(I,J)=SUM
 

ENDIF
 
61 CONTINUE
 
60 CONTINUE
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C--------------------------------------------------------------C 
C CHOOSE LOCATION C 
C--------------------------------------------------------------C 
C Use random number generator to get a random value. C 
C The location chosen by the particle will be decideded C 
C by the ranges now defined in the matrix PROB. If the C 
C number is less than the value in a location, but C 
C greater than the number in the previous location. it C 
C comes to rest in the current location. C 
C--------------------------------------------------------------C 

CHX=RAND(O) 

DO 70 I=l,NN,+l
 
DO 71 J=l,NN, +1
 

IF (CHX.LT.PROB(I,J)) THEN
 
11=1
 
JJ=J
 
GOTO 888
 

ENDIF
 
71 CONTINUE
 
70 CONTINUE
 

888 CONTINUE 

C--------------------------------------------------------C 
C This section dictates the location selection C 
C based upon previously selected spots. If a C 
C spot is already full, the surrounding spots are C 
C randomly selected based upon whether they are C 
C already occupied or not. C 
C--------------------------------------------------------C 

IF(II.LT.NN)THEN
 
IIp=II+1
 

ELSE
 
IIp=l
 

ENDIF
 

IF(JJ.LT.NNlTHEN
 
JJp=JJ+1
 

ELSE
 
JJp=l
 

ENDIF
 

IF (II. GT.1) THEN
 
IIm=II-1
 

ELSE
 
I Im=NN
 

ENDIF
 

IF (JJ. GT.1) THEN
 
JJm=JJ-1
 

ELSE
 
JJm=NN
 

ENDIF
 

FLAG = 0 

IF(DLA(IIp,JJ) .NE.O)THEN 
FLAG=l
 

ENDIF
 
IF(DLA(IIm,JJ) .NE.OlTHEN
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FLAG=l
 
ENDIF
 
IF(DLA(II,JJp) .NE.O)THEN
 

FLAG=l
 
ENDIF
 
IF(DLA(II,JJm) .NE.O)THEN
 

FLAG=l
 
ENDIF
 

IF(FLAG.EQ.1)THEN
 
DLA(II,JJ)=l
 
print *, II,JJ, "found"
 
STP=STEPMAX
 

C-----------------------------------------C 
C Particle keeps moving if it does C 
C not meet an occupied location. C 
C-----------------------------------------C 

ELSE
 
DO 80 I=l,NN,+l
 
DO 81 J=l,NN,+l
 
DO 82 K=1,4,+1
 

LOC1(I,J,K)=ZERO 
LOC2(I,J,K)=ZERO
 

82 CONTINUE
 
81 CONTINUE
 
80 CONTINUE
 

LOC1(II,JJ,1) = ONE
 
STP=STP+1
 

ENDIF
 

ENDDO 

STP=O
 
print * bigstep
 
BIGSTEP=BIGSTEP+1
 

DO 100 I=l,NN,+l
 
DO 101 J=l,NN,+l
 
DO 102 K=1,4,+1
 

LOC1(I,J,K)=ZERO 
LOC2(I,J,K)=ZERO
 

102 CONTINUE
 
101 CONTINUE
 
100 CONTINUE
 

LOCI (INT(RAND(O)*NN) ,INT(RAND(O)*NN) ,1) = ONE 

ENDDO 

C---------------------------C 
C WRITE IN DATA FILE C 
C---------------------------C 

WRITE(l,l)SUM, (BIGSTEP-1) ,CHX 

DO	 99 I=l,NN, +1
 
WRITE(2,3) (PROB(I,J),J=l,NN,+l)
 
WRITE (3 , 4) (DLA(I,J) ,J=l,NN,+l)
 

99 CONTINUE 
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DO	 90 I=l,NN,+l 
DO	 91 J=l,NN,+l
 

IF (DLA(I,J) .NE.O) THEN
 
WRITE(4,5)I,J
 
ENDIF
 

91 CONTINUE 
90 CONTINUE 

CLOSE(l)
 
CLOSE(2)
 
CLOSE(3)
 
CLOSE(4)
 

STOP 
1 FORMAT(' ',lX,F12.4,' ',lX,I5,' ',lX,F9.6) 
2 FORMAT ( ", 6X, 'X', ", 6X, 'Y',", 4X, 'VALUE') 
3 FORMAT(' ',lx,F9.6, ',lx,F9.6,' ',lx,F9.6,' , ,lx, F9. 6, 

1 ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6,' , ,lx,F9.6, 
2 ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6,' ,lx,F9.6, 
3 ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6,' ,lx,F9.6, 
4 ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6,· ',lx,F9.6, 
5 ' ,lx, F9. 6, , lx, F9. 6,' ,lx, F9. 6, ' , ,lx,F9.6, 
6 ' ',lx, F9. 6,' ',lx, F9. 6,' ,lx, F9. 6, • , ,lx,F9.6, 
7 ',lx,F9.6, ',lx,F9.6,' ,lx,F9.6,' , ,lx,F9.6, 
8 ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6) 

4 FORMAT ( , , , 15, ' , , IS, ' , , I 5, ' , , I 5, ' , , IS, 
1 11,15,11,15,11,15,11,15,",15, 

2 ",lX,I5," ,lX, IS," ,1X,IS," ,lX,I5, ,lX, 15,
 
3 ",lX,I5," ,lX,I5,' ',lX,I5,' ',lX,IS, ,lX,I5,
 
4 ",lX,I5,' ',lX,I5,' ',lX,IS," ,1X,IS, ,lX,I5,
 
S ",lX,IS," ,lX,I5,' ',lX,I5," ,lX,I5, ,lX, IS,
 
6 ,lX,I5,' 0 ,lX,I5,' ',lX,I5,' ',lX,I5, ,lX, IS)
0' 

5 FORMAT (0', lX, 19, 0, lX, 19) 
END 
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PROGRAM quantum4 

c------------------------------------------------------------------C 
C C 
C PROJECTION C 
C C 
C This program aims to simulate random movement C 
C of a particle based upon quantum mechanics and C 
C take into account the internal states of the particles. C 
C Using the quantum model, it aims to simulate a classical C 
C random walk by selecting a location after itereation. C 
C C 
C------------------------------------------------------------------C 
C C 
C PARAMETERS C 
C C 
C LOC = LOCATION MATRIX C 
C STP = STEP NUMBER C 
C PROB = PROBABILITY MATRIX C 
C CHX = CHOSEN LOCATION C 
C SUM = CHECK TO ENXURE THAT TOTAL PROBABILITY IS 1 C 
C NN = DEFINES MATRIX SIZE C 
C STRT = DEFINES CENTER OF MATRIX C 
C DLA = MATRIX OF CHOSEN LOCATIONS C 
C NEIGHBORS = CHECKS NEIGHBORING POINTS FOR PARTICLES C 
C C 
C------------------------------------------------------------------C 

IMPLICIT REAL *8 (A-H,O-Z)
 
INTEGER STP,SEED2,NN,STRTY,DLA(99,99),BIGSTEP,II,JJ
 
INTEGER NEIGHBORS (99,99),I,J, MAXSTEP
 
INTEGER STRTX,SEED,IIp,IIm,JJp,JJm,FLAG,STPMAX
 
REAL *8 PROB(99,99) ,CHX, SUM, PROB2(99,99)
 
REAL *8 PROB3(99,99) , TPI, ANG, RO
 
REAL *8 LOC1(99,99,4), LOC2(99,99,4)
 
OPEN(4,FILE='q4spot2.dat' ,STATUS='UNKNOWN')
 

C------------------------------C 
C SET DEFAULT PARAMETERS C 
C------------------------------C 

ZERO = O.ODO 
ONE = 1.0DO 
SUM = ZERO 
NN = 99 
STRTY (NN+l)/2 
STRTX (NN+l)/2 
SEED2 47 
STP = 0 
BIGSTEP = 0 
MAXSTEP=4000 
STPMAX=500 
TPI=2*3.l4l5926536 
RO=30.0 

C------------------------------------------C 
C INITIALIZE RANDOM NUMBER GENERATOR C 
C------------------------------------------C 



SEED=TIME ( ) 
CALL=RAND (SEED) 

C-----------------------------C 
C SET LOCATION MATRICES C 
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C-----------------------------C 

DO 10 I=l,NN,+1
 
DO 11 J=I,NN,+1
 
DO 12 K=I,4,+1
 

LOCl(I,J,K)=ZERO
 
LOC2(I,J,K)=ZERO
 

12 CONTINUE
 
DLA(I,J)=O
 

11 CONTINUE
 
10 CONTINUE
 

DO 1=0,5,+1 
DO J=0,5,+1 

DLA(SEED2+I, SEED2+J)=1 
END DO 
END DO 

FLAG = 0 
DO	 WHILE (FLAG.EQ.O) 

ANG=RAND(O)*TPI 
I = INT(RO*COS(ANG)) + 50 
J = INT(RO*SIN(ANG}) + 50 
IF (DLA(I,J) .EQ.O} THEN 

LOCl(I,J,I} = ONE 
FLAG =1 

ENDIF 
END DO 

C----------------------------C 
C BEGIN CALCULATIONS C 
C----------------------------C 

DO	 WHILE (BIGSTEP.LT.MAXSTEP) 

C---------------------------------C 
C UPDATE NEIGHBORS MATRIX C 
C---------------------------------C 

DO	 807 I=I,NN,+1 
DO	 808 J=I,NN,+1 

NEIGHBORS (I,J)=0 
IF (DLA(I,J) .GT.l} THEN 

DLA(I,J)=O 
END IF
 

808 END DO
 
807 END DO
 

DO 707 I=I,NN,+1 
DO 708 J=I,NN,+1 

IF (DLA(I,J) .NE.O} THEN 
IF (I.LT.NN) THEN 

IIp=I+l 
ELSE 

IIp=1 
ENDIF 
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IF (J.LT.NN) THEN
 
JJp=J+1
 

ELSE
 
JJp=l
 

ENDIF
 
IF (I.GT.1) THEN
 

IIm=I-1
 
ELSE
 

IIm=99
 
END IF
 

IF (J.GT.1) THEN
 
JJm=J-1
 

ELSE
 
JJm=99 

ENDIF 
NEIGHBORS (IIp,J) 1 
NEIGHBORS (Um, J) 1 
NEIGHBORS (I,JJp) 1 
NEIGHBORS(I,JJm) 1 

ENDIF
 
708 ENDDO
 
707 ENDDO
 

DO	 WHILE (STP.LT.STPMAX) 

C---------------------------------------------------------C 
C CALCULATE MATRIX FOR PROBABILITY IN EACH LOCATION C 
C---------------------------------------------------------C 

DO 40 I=1,NN,+1
 
DO 41 J=1,NN,+1
 

PROB(I,J)=ABS(LOC1(I,J,1»)**2+ABS(LOC1(I,J,2)**2+
 
1 ABS(LOC1(I,J,3))**2+ABS(LOC1(I,J,4))**2
 

PROB(I,J)=PROB(I,J) *NEIGHBORS(I,J) *(1-DLA(I,J»
 
41 CONTINUE
 
40 CONTINUE
 

C------------------------------------------------------C 
C Localize particle if there is a nonzero C 
C probability on site(s) neighboring structure C 
C------------------------------------------------------C 

SUM=ZERO 

DO	 60 I=1,NN,+1 
DO	 61 J=1,NN,+1 

PROB3(I,J)=PROB(I,J)*NEIGHBORS(I,J)*(1-DLA(I,J» 
PROB2(I,J)=ZERO 
IF (PROB3(I,J) .NE.ZERO) THEN 

SUM=SUM+PROB3(I,J)
 
PROB2(I,J)=SUM
 

ENDIF
 
61 CONTINUE
 
60 CONTINUE
 

C--------------------------------------------------------------C 
C CHOOSE LOCATION C 
C--------------------------------------------------------------C 
C Use random number generator to get a random value. C 
C The location chosen by the particle will be decideded C 
C by the ranges now defined in the matrix PROB. If the C 
C number is less than the value in a location, but C 
C greater than the number in the previous location, it C 
C comes to rest in the current location. C 
C--------------------------------------------------------------C 
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CHX=RAND(O}
 
FLAG = 0
 

DO 70 I=LNN, +1
 
DO 71 J=l,NN,+l
 

IF	 (CHX.LT.PROB2{I,J)) THEN
 
II=I
 
JJ=J
 
FLAG=l
 
GOTO 888
 

ENDIF
 
71 CONTINUE
 
70 CONTINUE
 

888 CONTINUE 
IF (FLAG.EQ.l) THEN
 

print *, II,JJ, SUM, RO, "FOUND"
 
DLA (II,JJ) = 1
 
STP=STPMAX
 
RO=30.0+REAL(BIGSTEP*15.0)!MAXSTEP
 

C-----------------------------------------C 
C Particle keeps moving if it does C 
C not meet an occupied location. C 
C-----------------------------------------C 

ELSE 
STP=STP+l 

C----------------------------C 
C MOVE WAVE FUNCTION C 
C----------------------------C 

DO 23 I=LNN,+l
 
DO 24 J=l,NN,+l
 
D025K=L4,+1
 

LOC2(I,J,K)=ZERO
 
25 CONTINUE
 
24 CONTINUE
 
23 CONTINUE
 

DO 20 I=LNN, +1
 
DO 21 J=l,NN,+l
 
DO 22 K=1,4,+1
 

LOC1(I,J,K)=LOC1(I,J,K)!SQRT(ONE-SUM}) 
IF (PROB3(I,J) .NE.ZERO) THEN 

LOC1{I,J,K)=ZERO 
ENDIF 
IF (LOC1(I,J,K) .NE.ZERO} THEN 

IF (K.EQ.l.ODO) THEN 
LOC2(I,J,1)=LOC2(I,J,1)+LOC1(I,J,K) 
LOC2(I,J,2)=LOC2{I,J,2}+LOC1(I,J,K) 
LOC2(I,J,3)=LOC2{I,J,3}+LOC1{I,J,K) 
LOC2(I,J,4}=LOC2(I,J,4}+LOC1{I,J,K) 

ELSEIF (K.EQ.2.0DO) THEN 
LOC2(I,J,1)=LOC2{I,J,l}+LOC1(I,J,K) 
LOC2(I,J,2)=LOC2(I,J,2)-LOC1{I,J,K) 
LOC2(I,J,3)=LOC2(I,J,3}+LOC1(I,J,K} 
LOC2(I,J,4)=LOC2(I,J,4}-LOC1(I,J,K} 

ELSEIF (K.EQ.3.0DO) THEN 
LOC2{I,J,1)=LOC2(I,J,1)+LOC1(I,J,K} 
LOC2{I,J,2)=LOC2(I,J,2}+LOC1(I,J,K} 
LOC2(I,J,3)=LOC2(I,J,3)-LOC1(I,J,K} 
LOC2{I,J,4)=LOC2(I,J,4)-LOC1(I,J,K} 
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ELSE 
LOC2(I,J,1)=LOC2(I,J,1)+LOC1(I,J,K) 
LOC2(I,J,2)=LOC2(I,J,2)-LOC1(I,J,K) 
LOC2(I,J,3)=LOC2(I,J,3)-LOC1(I,J,K) 
LOC2(I,J,4)=LOC2(I,J,4)+LOC1(I,J,K) 

ENDIF 
ENDIF
 

22 CONTINUE
 
21 CONTINUE
 
20 CONTINUE
 

DO 93 I=1,NN,+1
 
DO 94 J=1,NN,+1
 
DO 95 K=1,4,+1
 

LOC1(I,J,K)=LOC2(I,J,K)!(2.0DO) 
LOC2(I,J,K)=ZERO
 

95 CONTINUE
 
94 CONTINUE
 
93 CONTINUE
 

C------------------C 
C F OPERATOR C 
C------------------C 

DO 30 I=1,NN,+1
 
DO 31 J=1,NN,+1
 

IF (I.LT.NN) THEN
 
IIp=I+1
 

ELSE
 
IIp=1
 

ENDIF
 
IF (J.LT.NN) THEN
 

JJp=J+1
 
ELSE
 

JJp=1
 
ENDIF
 
IF (I.GT.1) THEN
 

IIrn=I-1
 
ELSE
 

IIrn=99
 
ENDIF
 
IF (J.GT.1) THEN
 

JJrn=J-1
 
ELSE
 

JJrn=99
 
ENDIF
 
DO 32 K=1,4,+1
 

IF (LOC1(I,J,K) .NE.O.ODO) THEN 
LOC2(I,J,K)=ZERO 
IF (K.EQ.1) THEN 

LOC2(I,JJp,K)=LOC2(I,JJp,K)+LOC1{I,J,K) 
ENDIF 
IF(K.EQ.2) THEN 

LOC2(IIp,J,K)=LOC2(IIp,J,K)+LOC1(I,J,K) 
ENDIF 
IF (K.EQ.3) THEN 

LOC2(I,JJrn,K)=LOC2(I,JJrn,K)+LOC1(I,J,K) 
ENDIF 
IF (K.EQ.4) THEN 

LOC2(IIrn,J,K)=LOC2{IIrn,J,K)+LOC1(I,J,K)
 
ENDIF
 

ENDIF
 
32 CONTINUE
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31 CONTINUE
 
30 CONTINUE
 

DO 33 I=l,NN,+l
 
DO 34 J=l, NN, +1
 
DO 35 K=l,4,+1
 

LOC1(I,J,K)=LOC2(I,J,K)
 
35 CONTINUE
 
34 CONTINUE
 
33 CONTINUE
 

ENDIF
 
ENDDO
 

STP=O 

print *, BIGSTEP
 
BIGSTEP=BIGSTEP+1
 

DO 1080 I=l,NN.+1
 
DO 1081 J=l,NN.+1
 
DO 1082 K=l,4,+1
 

LOC1(I,J,K)=ZERO
 
1082 CONTINUE
 
1081 CONTINUE
 
1080 CONTINUE
 

FLAG = 0 

DO	 WHILE (FLAG.EQ.O)
 
ANG=RAND(O)*TPI
 
I = INT(RO*COS(ANG)) + 50
 
J = INT(RO*SIN(ANG)) + 50
 
IF (DLA(I,J) .EQ.O) THEN
 

LOC1(I,J,l) = ONE
 
FLAG =1
 

ENDIF
 
ENDOO
 

ENDDO
 

C---------------------------C 
C WRITE IN DATA FILE C 
C---------------------------C 

DO 90 1=1. NN, +1
 
DO 91 J=l,NN,+l
 

IF (DLA(I,J) .NE.O) THEN
 
WRITE(4,5)I,J
 

ENDIF
 
91 CONTINUE
 
90 CONTINUE
 

CLOSE(4) 

STOP 

1 FORMAT(' ',lX,F12.4,' ',lX,I5,' ,lX,F9.6)
 
2 FORMAT ( ',6X, 'X'," ,6X, 'y'," ,4X, 'VALUE')
 
3 FORMAT ( ,lx,F9.6," ,lx,F9.6,' ,lx,F9.6," ,lx,F9.6,
 

1 ,lx,F9.6,' ',lx,F9.6,' ,lx,F9.6,' ',lx,F9.6,
 
2 ,lx,F9.6,' ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6,
 
3 ,lx,F9.6,' ',lx,F9.6,' ',lx,F9.6,' ',lx,F9.6,
 



4 ',lx,F9.6, ' 
5 ' , lx, F9 . 6, ' 
6 ' , lx, F9. 6, ' 
7 ,lx,F9.6, ' 
8 " lx,F9.6, 

1 
4 FORMAT ( , , ,15, ' , ,15, ' 

I I IS, I , IS,I I I 

, , lx, F9 . 6, , 
, , lx, F9. 6, ' 
, , lx, F9. 6, ' 
',lx,F9.6, , 
',lx,F9.6, ' 

• , 15, ' 
1,15 

1 
I 

2 ",lX,I5,' ',lX,I5, 
3 ",lX,I5,' ',lX,I5," 
4 ' ',IX,I5," ,IX,I5," 

, , 15, ' 
I, IS, I 

',lx,F9.6, ' 
',lx,F9.6, , 
, , lx, F9. 6, • 
, , lx, F9 . 6, , 
',lx,F9.6) 

, ,15, 
1,15, 

',lX,I5," ,lX,IS," 
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',lx,F9.6, 
, ,lx,F9.6, 
• ,lx, F9. 6, 
, ,lx, F9. 6, 

,lX,I5, 
,lX,I5," ,IX,I5,' ',lX,I5, 
,lX,I5," ,IX,I5,' ',IX,I5, 

5 ",IX,I5," ,lX,I5,' ',IX,I5,' ',IX,I5, ' ,lX, 15, 
6 ',IX,I5,' ',IX,I5," ,IX,I5,' ',IX,I5,' ',IX,I5) 

5 FORMAT! ,IX,I9,' ',IX,I9} 
END 
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Second Classical Model Program Code 

PROGRAM classic3 

C------------------------------------------------------------------C 
C C 
C PROJECTION C 
C C 
C This program aims to simulate random movement C 
C of a particle based upon quantum mechanics and C 
C take into account the internal states of the particles. C 
C Using the quantum model, it aims to simulate a classical C 
C random walk by selecting a location after itereation. C 
C C 
C------------------------------------------------------------------C 
C C 
C PARAMETERS C 
C C 

C LOC = LOCATION MATRIX C 
C STP = STEP NUMBER C 
C PROB = PROBABILITY MATRIX C 
C CHX = CHOSEN LOCATION C 
C SUM = CHECK TO ENXURE THAT TOTAL PROBABILITY IS 1 C 
C NN = DEFINES MATRIX SIZE C 
C STRT = DEFINES CENTER OF MATRIX C 
C DLA = MATRIX OF CHOSEN LOCATIONS C 
C NEIGHBORS = CECHKS NEIGHBORS LOCATIONS FOR PARTICLES C 
C C 
C------------------------------------------------------------------C 

IMPLICIT REAL *8 (A-H,O-Z)
 
INTEGER STP,SEED2,NN,STRTY,DLA(99, 99) ,BIGSTEP,II,JJ
 
INTEGER NEIGHBORS (99,99),I,J, MAXBIG
 
INTEGER STRTX,SEED,IIp,IIm,JJp,JJm,FLAG,STPMAX
 
REAL *8 PROB(99,99),CHX,SUM,PROBold(99,99), PROB2(99,99)
 
REAL *8 PROB3(99,99) , PI, AN, RO
 
OPEN(4,FILE='c3spot2.dat',STATUS='UNKNOWN')
 

C------------------------------C 
C SET DEFAULT PARAMETERS C 
C------------------------------C 

ZERO = O.ODO
 
ONE = 1.0DO
 
SUM = ZERO
 
NN = 99
 
STRTY (NN+l) 12
 
STRTX (NN+l)/2
 
SEED2 47
 
STP = 0
 
BIGSTEP = 0
 
STPMAX=500
 
MAXBIG=4000
 
TPI=2*3.1415926536
 
RO=30.0
 

C------------------------------------------C 
C INITIALIZE RANDOM NUMBER GENERATOR C 
C------------------------------------------C 

SEED=TIME ()
 
CALL=RAND (SEED)
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C-----------------------------C 
C SET PROBABILITY MATRICE C 
C-----------------------------C 

DO	 10 I=I,NN,+1 
DO	 11 J=l, NN, +1
 

DLA{I,J}=O
 
PROB{I,J)=ZERO
 

11 CONTINUE
 
10 CONTINUE
 

DO 1=0,5,+1
 
DO J=0,5,+1
 

DLA(SEED2+I, SEED2+J}=1
 
ENDDO
 
ENDDO
 

FLAG = 0 

DO	 WHILE (FLAG.EQ.O)
 
ANG=RAND(O}*TPI
 
I = INT(RO*COS(ANG) + 50
 
J = INT(RO*SIN(ANG) + 50
 
IF (DLA(I,J) .EQ.O) THEN
 

PROB{I,J} = ONE
 
FLAG =1
 

END IF
 
ENDDO
 

C----------------------------C 
C BEGIN CALCULATIONS C 
C----------------------------C 

DO	 WHILE (BIGSTEP.LT.MAXBIG) 

C---------------------------------C 
C Update Neighbors matrix C 
C---------------------------------C 

DO	 807 I=I,NN,+l 
DO	 808 J=l,NN,+l
 

NEIGHBORS(I,J}=O
 
IF (DLA(I,J) .GT.l) THEN
 

DLA(I,J)=O 
END IF
 

808 ENDDO
 
807 ENDDO
 

DO 707 I=I,NN,+1
 
DO 708 J=I,NN,+1
 

IF (DLA(I,J) .NE.O) THEN
 
IF (I.LT.NN) THEN
 

IIp=I+l
 
ELSE
 

IIp=1
 
ENDIF
 
IF (J.LT.NN) THEN
 

JJp=J+l
 
ELSE
 

JJp=1
 
ENDIF
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IF (I.GT.l) THEN
 
IIm=I-l
 

ELSE
 
IIm=99
 

ENDIF
 
IF (J.GT.l) THEN
 

JJm=J-l
 
ELSE
 

JJm=99
 
ENDIF
 
NEIGHBORS (IIp,J) 1
 
NEIGHBORS (IIm, J) 1
 
NEIGHBORS (I,JJp) 1
 
NEIGHBORS (I,JJm) 1
 

ENDIF
 
708 ENDDO
 
707 ENDDO
 

DO	 WHILE (STP.LT.STPMAX) 

DO	 23 I=l,NN,+l 
DO	 24 J=l,NN,+l
 

PROBold(I,J)=PROB(I,J)
 
PROB(I,J)=ZERO
 

24 CONTINUE
 
23 CONTINUE
 

C------------------------------------------------------C 
C Localize particle is there is a nonzero C 
C probability on site(s) neighboring structure C 
C------------------------------------------------------C 

SUM=ZERO 

DO	 60 I=l,NN,+l 
DO	 61 J=l,NN,+l 

PROB3(I,J)=PROBold(I,J}*NEIGHBORS(I,J)*(1-DLA(I,J)} 
PROB2(I,J)=ZERO 
IF (PROB3(I,J) .NE.ZERO) THEN 

SUM=SUM+PROB3(I,J)
 
PROB2(I,J)=SUM
 

ENDIF
 
61 CONTINUE
 
60 CONTINUE
 

C--------------------------------------------------------------C 
C CHOOSE LOCATION C 
C--------------------------------------------------------------C 
C Use random number generator to get a random value. C 
C The location chosen by the particle will be decideded C 
C by the ranges now defined in the matrix PROB. If the C 
C number is less than the value in a location, but C 
C greater than the number in the previous location, it C 
C comes to rest in the current location. C 
C--------------------------------------------------------------C 

CHX=RAND(O)
 
FLAG = 0
 

DO 70 I=l,NN,+l
 
DO 71 J=l,NN,+l
 

IF (CHX.LT.PROB2(I,J)} THEN
 
11=1
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JJ=J
 
FLAG=l
 
GOTO 888
 

ENDIF
 
71 CONTINUE
 
70 CONTINUE
 

888 CONTINUE 

IF (FLAG.EQ.l) THEN
 
print *, II,JJ, SUM, RO, "FOUND"
 
DLA (II, J J) = 1
 
STP=STPMAX
 
RO=30. +REAL (BIGSTEP*15. O)/MAXBIG
 

C-----------------------------------------C 
C Particle keeps moving if it does C 
C not meet an occupied location. C 
C-----------------------------------------C 

ELSE
 
STP=STP+l
 

C------------------------------------------C 
C Probability bounces off structure C 
C------------------------------------------C 

DO	 30 I=l,NN, +1 
DO	 31 J=l, NN, +1 

PROBold(I,J)=PROBold(I,J)/(ONE-SUM) 
IF (PROB3(I,J) .NE.ZERO) THEN 
PROBold(I,J)=ZERO 
ENDIF 
IF (PROBold(I,J) .NE.ZERO) THEN 
IF (I.LT.NN) THEN
 

IIp=I+l
 
ELSE
 

IIp=l 
ENDIF 
IF (J.LT.NN) THEN 

JJp=J+l
 
ELSE
 

JJp=l
 
ENDIF
 
IF (I.GT.l) THEN
 

IIm=I-l
 
ELSE
 

IIm=99
 
ENDIF
 

IF (J.GT.l) THEN
 
JJm=J-l
 

ELSE
 
JJm=99 

ENDIF 
PROB(I,JJp)=PROB(I,JJp)+PROBold(I,J)/4 
PROB(I,JJm)=PROB(I,JJrn)+PROBold(I,J)/4 
PROB(IIp,J)=PROB(IIp,J)+PROBold(I,J)/4 
PROB(IIm,J)=PROB(IIm,J)+PROBold(I,J)/4 

ENDIF
 
31 CONTINUE
 
30 CONTINUE
 

ENDIF
 
ENDDO
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STP=O 

print *, BIGSTEP
 
BIGSTEP=BIGSTEP+l
 

DO 1080 I=l,NN,+l
 
DO 1081 J=l,NN,+l
 

PROB(I,J)=ZERO
 
1081 CONTINUE
 
1080 CONTINUE
 

FLAG = 0 
DO	 WHILE (FLAG.EQ.O)
 

ANG=RAND ( 0) *TPI
 
I = INT(RO*COS(ANG» + 50
 
J = INT(RO*SIN(ANG) + 50
 
IF (DLA(I,J) .EQ.O) THEN
 

PROB(I,J) = ONE
 
FLAG =1
 

ENDIF
 
ENDDO
 

ENDDO 

C---------------------------C 
C WRITE IN DATA FILE C 
C---------------------------C 

DO 90 I=l,NN,+l
 
DO 91 J=l,NN,+l
 

IF (DLA(I,J) .NE.O) THEN
 
WRITE(4,S)I,J
 

ENDIF
 
91 CONTINUE
 
90 CONTINUE
 

CLOSE(4) 

STOP 

1 FORMAT(' . , IX, F 12 . 4, ' , ,lX, 15, ' ',lX,F9.6)
 
2 FORMAT ( ",6X, 'X'," ,6X, 'Y'.·' ,4X. 'VALUE')
 
3 FORMAT(' , , lx, F9 .6, ' , , lx, F9 .6, ' , , lx, F9 . 6, ' , ,lx, F9. 6,
 ,1 , ,lx, F9. 6, ' , , lx, F9 .6, ' , ,lx, F9. 6, ' , ,lx, F9. 6,
 

2 ' , lx, F9 . 6, ' , , lx, F9 .6, ' , ,lx, F9. 6, ' , ,lx, F9. 6,
 
3 ' , lx, F9 .6, ' , , lx, F9 . 6, ' , ,lx, F9. 6, ' , ,lx, F9. 6,
 
4 ' , lx, F9 .6, ' , , lx, F9 . 6, ' , ,lx, F9. 6, ' , ,lx,F9.6,
 
5 ' , lx, F9 . 6, ' , , lx, F9 . 6, ' , , lx, F9 .6, ' , ,lx,F9.6,
 
6 ' , lx, F9 . 6, ' , , lx, F9 . 6, ' , ,lx, F9. 6, ' , ,lx, F9. 6,
 
7 ' , lx, F9 .6, ' , , lx, F9 . 6, ' , ,lx, F9. 6, ' , ,lx,F9.6,
 
8 , , , lx, F9 . 6, ' , , lx, F9 . 6, ' ',lx,F9.6)
 

4 FORMAT(' ',15,' ',IS,' ',IS,' ',IS,' ',15,
 
1 11,15,11 / 15,11,15,11,15, I ',15,
 
2 ",lX,I5,' ',lX,I5,' ',lX,IS,' ',lX,I5,' ',lX,IS,
 
3 ",lX,I5,' ',lX,IS,' ',lX,IS,' ',lX,IS,' ',lX,I5,
 
4 ",lX,I5,' ',lX,IS,' ',lX,IS,' ',lX,I5," ,1X,IS,
 
5 ' ',IX, IS, ' , ,IX, IS, ' ',IX, IS, ' ',IX, IS, ' ',IX, IS,
 
6 ",lX,IS," ,1X,IS,' ',lX,IS," ,lX,IS,' ',lX,IS)
 

5 FORMAT(" ,lX,I9,' ',lX,I9) 

END 
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