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Glossary of Terms 

DMF: N,N-dimethyl formamide  

DCM: Dichloromethane 

BOP: Benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate 

PyBOP: benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate 

1H NMR: Proton Nuclear Magnetic Resonance 

ppm: Part per million 

IR: Infrared 

cm: Centimeters 

THF: Tetrahydrofuran 

TLC: Thin-Layer Chromatography 

MeOH: Methanol 

min: Minutes 

RT: Room Temperature 

h: Hours 

µv: Microwave  

∆: Heat 

mL: Milliliters 

Et2O: Diethyl ether 

GCMS: Gas Chromatography Mass Spectroscopy 
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Abstract 

Amide bond formation is an already well documented area of organic chemistry, 

and is very useful in its application in medicine and pharmaceuticals. However, current 

methods have not been investigated with regards to optimization of reaction times, 

solvents, and energy sources. In addition, current methods also utilize toxic solvents to 

cleave the peptide from the solid phase resin. In our study, we combine the Staudinger 

and Vilarrasa coupling reactions with microwave irradiation to develop and optimize the 

synthesis of amide bonds through the use of a solid support. Instead of attaching the 

peptide to the solid support, our amide bond is left in solution, allowing for easier 

cleanup and the use of less toxic solvents. 
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Introduction 

 The formation of amide bonds plays an important role in medicinal and 

pharmaceutical biochemistry. They are found in peptides, the building blocks of proteins, 

which are essential to all processes within the human body. Without amide bond 

formation, immunoglobulin molecules could not form and complex with antigens, halting 

the immune response, and basic protein receptors in cell membranes could not initiate 

metabolic and cell-signaling pathways, distorting all physiologic processes of the cell. 

Amide bonds are also important components of pharmacologic products. β-lactams 1 

[Figure 1] are a subset of antibiotics and contain a 4-membered ring with an internal 

amide bond.1

 

 These compounds, of which penicillin is an example, contributed to over 55 

million prescriptions in 1992.2 Hydantoins 2 and benzodiazepines 3 [Figure 1], also 

contain an amide bond within a ring structure, and are a class of psychotropic drugs 

considered minor tranquilizers and anticonvulsants. Benzodiazepines competitively 

inhibit the binding site on neurons for the neurotransmitter γ-Aminobutyric acid (GABA), 

which causes neuron inhibition and creates psychotropic effects.3 Thus, methods that 

create amide bonds are essential to many facets of physiology, pharmacology, and 

immunology. 

 There are many current methods utilized by chemists to synthesize amide bonds. 

Most methods create amides 4 from carboxylic acids 5 and amines 6 [Scheme 1]. 
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However, the acid must be “activated” by peptide coupling reagents such as 

phosphonium class reagents 7 [Figure 2]. These reagents turn the acid portion of the 

carboxylic acid into a phosphonium leaving group 8 [Scheme 1].4 A leaving group is 

denoted as an atom or atoms that are easily lost in a reaction in a way that allows other 

atoms to be incorporated into the molecule. The use of phosphonium class reagents 

allows the reaction with the desired amine to occur at room temperature or temperatures 

not exceeding the boiling point of the solvent.1,5,6 These peptide coupling reagents are 

often reacted in toxic and/or halogenated solvents, such as DMF and DCM. 

Consequently, further methods need to be developed to eliminate some of the use of toxic 

solvents and side products of peptide coupling reagents. 

 

 

 

 Solid phase resins are commonly used in the synthesis of amide bonds. This 

allows for separation of the product from the reaction solution by filtration, as the peptide 

4 is bonded to the resin and any impurities from activation remain in solution. Although 
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this allows for easy product isolation, removal of the peptide from the resin often utilizes 

excess amounts of acid or other toxic compounds.  

 In the method proposed in this paper, the amide bond formation occurs with the 

help of a triphenylphosphine resin. When the reaction is run, the triphenylphosphine 

oxide leaving group is attached to the resin, and the desired amide product is free in 

solution [Scheme 2], as opposed to traditional methods, bypassing the steps dealing with 

removal of the amide from the resin.7 As a result, not only are less solvents necessary to 

isolate the product (already filtered from resin), but a greater diversity of solvents can be 

investigated compared to traditional methods.  

 

 

 The removal of the amide from the resin occurs through the use of the Staudinger-

Vilarrasa reaction. The Staudinger portion [Scheme 2] of the proposed reaction results in 

the reaction of an azide 9 with the triphenylphosphine 10 resin bead. In our reaction, the 

azide acts as an amino acid methyl ester analog and acts as our “amine” component.5 The 

mechanism of the Vilarrasa coupling [Scheme 3] utilizes a carboxylic acid 5 to neutralize 

the charge on the phosphorazide 15 bound to the resin. The negatively charged acid then 

acts as a nucleophile and attacks the triphenylphosphonium salt 16. The nitrogen attached 
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to the triphenylphosphine 17 then attacks the carbonyl carbon, temporarily breaking the 

carbon-oxygen π bond. When the carbon-oxygen double bond reforms, the 

triphenylphosphine oxide 20 serves as the phosphonium leaving group to form the amide 

19 in solution.8 

 

 The proposed reaction will also utilize microwave irradiation as an energy source, 

as opposed to convectional heating. Microwave irradiation directly heats the reactants or 

the solvent by interacting with the dielectric polarizations in polar molecules. Molecules 

that are irradiated align themselves with the applied microwave field as long as a 

compound is polar. The molecules continually rotate to reposition themselves with the 

field, thus absorbing the microwave energy. The electromagnetic energy absorbed by the 

molecule to align itself is converted to heat energy, and the energy is then used to fuel the 

desired reaction.6 The use of microwaves is a more efficient energy source compared to 

convection due primarily to the direct heating of the molecules. In addition, microwave 

heating in commercial systems (such as the one used in this method), can be adjusted to 

maintain certain temperatures and pressures. This allows certain solvents, when heated 

with microwaves, to be heated above their boiling points, leading to a sort of 
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superheating that tends to lead to increased reactions rates in various reactions.6,8 

Results and Discussion 

 The production of the α-azido substituted methyl ester 22 resulted from the 

reaction of 2-bromo-acetic acid methyl ester 21 and sodium azide [Scheme 4]. In order to 

increase the solubility of sodium azide in acetone, 18-crown-6 was added to the reaction 

mixture. After the reaction, 1H NMR of 2-azido-acetic acid methyl ester 22 revealed a 

singlet peak at 3.90 ppm of integration 2 corresponding to the two hydrogens attached to 

the alpha carbon. It also showed a singlet peak at 3.81 ppm of integration 3, signifying 

the three hydrogens attached to the ester carbon. Infrared spectroscopy revealed a strong, 

narrow peak at 2108 cm-1, signifying the attachment of the azide in place of the bromide. 

Another two peaks occurred at 1748 cm-1 and 2950 cm-1, signifying the presence of the 

carbonyl and sp3 hybridized carbon-hydrogen bonds, respectively. These all correspond 

to literature values.9 Given this information, it is inferred that the azide did in fact replace 

the bromide, and product 22 was created as intended. Since this reaction is a simple SN2 

reaction, 98% yields were reached given the ability of the azide to act as a nucleophile 

and the leaving group ability of the bromine atom. 

 

 The production of α-azido substituted methyl ester 24 also occurred between α-

bromo-phenylacetic acid 23 and sodium azide [Scheme 4]. After the reaction, 1H NMR of 

α-azido-phenylacetic acid methyl ester 24 revealed peaks at 7.37, 4.9, and 3.81 ppm. The 

set of peaks at 7.37 ppm indicated the aromatic phenyl ring on the alpha carbon as an 
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integration 5 multiplet. The 4.9 ppm singlet of integration one corresponds to the lone H 

atom on the α carbon. Finally, the 3.74 ppm triplet of integration 3 represents the 3 

hydrogen molecules attached to the ester carbon. All of these, again, correspond to 

literature values.9 Infrared spectra shows peaks at 3025, 2950, 2112, and 1740 cm-1. 

Similar to compound 22, the strong narrow peak at 2112 cm-1 signifies the azide 

absorption. Also, the peaks at 1740 cm-1 and 2950 cm-1 occurred, signifying a carbon-

oxygen π bond and sp3 carbon atoms bonded to hydrogens, respectively. The addition of 

a 3025 cm-1 peak in comparison to compound 22 represents the presence of the aromatic 

sp2 carbons bonded to hydrogens atoms of the phenyl group. Thus, given the spectral 

data, our desired product of α-azido-phenylacetic acid methyl ester 24 was created with a 

yield of 78%.  

 

 

 The second reaction in the sequence, the Staudinger reaction, represents the 

attachment of the azide compound to the resin forming a phosphazide [Scheme 5]. The 

lone pair of electrons from the triphenyl phosphine resin attacks the azide, creating a 

resonance-stabilized, charged nitrogen-phosphorus bond 11 with the release of nitrogen 

gas. When using 2-azido-acetic acid methyl ester 22, THF or toluene was the solvent 

used. When done initially, the 2-azido-acetic acid methyl ester 22 was only added to the 

resin for 5 min, and the subsequent microwave irradiated Vilarrasa reaction did not 
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produce a noticeable reaction. The Staudinger reaction was performed again and 

monitored by TLC. A TLC was performed on the reaction mixture in every 1 minute for 

the first 10 minutes then at the 15 minute mark on a subsequent reaction using 5% MeOH 

in DCM as the elution solvent. The TLC was then stained with phosphomolybdic acid to 

determine the disappearance of the α-azido methyl ester from solution. Only at the 15 

minute mark was a reaction noted by TLC. This indicated the initial conditions (5 min, 

RT) did not allow the Staudinger reaction to occur on such a short time scale. Thus, the 

reaction was set for 2 hours, allowing for it to run for a longer time period. Infrared 

spectroscopy was taken of the reaction solution, and loss of the azide peak at around 2100 

cm-1 was noted. Loss of absorption was used as an indication of the attachment of the 

methyl ester to the resin, and release of N2 gas was also noted to occur during the 

reaction. 

 

 In the Staudinger reaction of α-azido-phenylacetic acid methyl ester 24, toluene 

was used as the solvent. This change was necessary as the Vilarrasa reaction was to be 

performed in toluene. Previous literature used toluene as a solvent for these reactions as it 

is able to be heated to twice the temperature of THF based on their known boiling points. 

It was hypothesized that the higher temperature may help with regards to the microwave 

irradiated reaction by increasing the rate.7 When switching over to compound 24, 

optimization of the Staudinger reaction was necessary, as it was found previously that the 

Staudinger reaction was not completing in the short amount of time used, and at 2 hours 
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it seemed to be completed. Thus, the Staudinger reaction of 24 was allowed to run for 2 

h, with samples of the reaction solution taken at the 20, 60, 100, and 120 min marks for 

IR spectroscopy to determine loss of the α-azido-phenylacetic acid methyl ester 24 from 

solution, indicating attachment to the resin. Figure 2 shows the absorbance at 2106 cm-1 

of the four IR spectra transposed [Figure 3]. From the spectra the azide reaction 

completed by 100 min, and only miniscule amounts remained at 120 min. Thus, the 

optimal time for allowing the Staudinger reaction to complete was found to be 100 min.  

 
 The last step in the reaction series is the microwave irradiated Vilarrasa reaction 

[Scheme 6], utilizing benzoic acid to create the amide bonded product free in solution 

while leaving the triphenyl phosphine oxide compound attached to the resin. Multiple 
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combinations of reaction times, temperatures, solvents, and reactants were used [Table 

1]. 

 

Reactant [Benzoic Acid] Solvent Time  (oC) % Yield 
2-azido-acetic acid methyl ester 22 1.5 equiv THF 90 min 55 0 
2-azido-acetic acid methyl ester 22 1.5 equiv THF 90 min 55 0 
2-azido-acetic acid methyl ester 22 1.0 equiv Toluene 2 h 60 0 
α-azido-phenylacetic acid methyl ester 24 1.0 equiv Toluene 2 h 100 0 
α-azido-phenylacetic acid methyl ester 24 1.0 equiv Toluene 2 h 110 trace 
α-azido-phenylacetic acid methyl ester 24 1.0 equiv Toluene 4 h 110 7% 

Table 1. Microwave irradiated Vilarrasa coupling reaction conditions, in chronological order. 
 

 This phase of the study was performed on both azide compounds 22 and 24. 

Initially, 2-azido-acetic acid methyl ester 22 was added to benzoic acid 12 to form the 

compound N-benzoyl-glycine methyl ester 25 [Scheme 6]. After the reaction was run for 

90 min, the product was washed with NaOH to remove the excess benzoic acid. GCMS 

was then taken, but there were no compounds detected that corresponded to expected 

molecular weights. The reaction was thus run again using the same conditions. Thin-layer 

chromatography was performed on the reaction solution and co-spotted with benzoic acid 

and a sample of the organic layer after subsequent NaOH washes. The TLC was 

developed and Rf values of the mixture compounds were 0.85, 0.45, and 0.30. The 

compound corresponding to the Rf of 0.85 existed in every sample except the benzoic 

acid, and is believed to be an impurity from the resin. The 0.45 compound corresponded 

to benzoic acid, and the 0.30 Rf compound appeared only in the post-microwave solution. 



Ryan Schmidtz 
 

15 
 

This compound was assumed to be a product of interest. This compound’s concentration 

faded until it no longer appeared in the TLC of the organic layer after subsequent washes. 

Thus, it was concluded that the product of the reaction, possibly N-benzoyl-glycine 

methyl ester 25, was being lost during the aqueous wash due to its polarity. The 

microwave reaction was then run with toluene as the solvent at 60 oC to ensure similar 

reactivity in that solvent. A TLC developed in 5% MeOH in DCM was used to separate 

and identify the components of the reaction mixture. There were two compounds that 

were present after the reaction that were not there before – one with an Rf value of 0.47 

and another with Rf equal to 0.34. These two compounds correspond to the benzoic acid 

and a possible product, respectively. Since the Rf of the product in toluene matched that 

of the product produced in THF, it was assumed that the reactions were performing 

similarly despite the solvent change. 

 

 At this point, the α-azido substituted methyl ester component was modified to 

make a product that would be more hydrophobic and thus more likely to remain in the 

organic layer for isolation. The starting material chosen was α-bromo-phenylacetic acid 

methyl ester 23, which after reacting with the sodium azide, became α-azido-

phenylacetic acid methyl ester 24. The solvent utilized for study of the Staudinger and 

Vilarrasa reactions of 24 was toluene as previous work showed increased reactivity at 

higher temperatures.7 For the creation of α-(benzoylamino)-phenylacetic acid methyl 

ester 26, the microwave was heated to 100 oC for 1 hour. A TLC was performed on the 
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reaction mixture after heating the reaction in the microwave. Co-spotting was performed 

to determine the solution components. A compound assumed to be a product of the 

reaction was noted at an Rf of 0.44 (5% MeOH in DCM). Two other compounds of Rf 

values 0.50 and 0.53, because they appear in the reaction mixture before benzoic acid is 

added but after the Staudinger reaction, these compounds are hypothesized to be 

unintended side products. A possible side reaction may occur if water gets into the flask, 

which then may protonate the nitrogen of the resin bound methyl ester instead of benzoic 

acid, producing α-amino phenylacetic acid methyl ester 27 in solution, replacing the 

intended amide bond forming reaction.  

 

 All compounds from the product reaction mixture remained visible on the TLC 

throughout the successive washes, concluding that the product remained in the organic 

layer after subsequent washes. When the solvent was removed from the washed reaction 

mixture, both a solid and a liquid remained. The 1H NMR spectral data was taken of both 

phases, and both revealed a large number of small peaks or impurities in the solution. 

Due to the large number of impurities in both 1H NMR spectra of the solid and liquid 

phases, the identification of any one compound was not possible. 

 The microwave irradiated reaction was executed again in toluene, but at 110 oC in 

an attempt to form a larger amount of product for identification. The reaction produced 

both solid and liquid products again, which were analyzed by TLC to determine the 

compounds contained in the solid and liquid, and to establish the best way to isolate the 
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components. The developing solutions were 1% MeOH in DCM and 5% MeOH in DCM. 

In the 1% MeOH solution, the compound assumed to be the product 26 did not move at 

all, and remained on the baseline, and several other products showed up off of the 

baseline, with Rf values from 0.78 to 0.24 in samples of both the solid and liquid. In the 

5% MeOH solution, a majority of the impurities had an Rf value of around 0.70 and the 

assumed product had an Rf value of 0.23 in samples of both solid and liquid. Both TLC 

plates were stained with ninhydrin, and both showed very deep brown staining of one 

compound of the product mixture (Rf approx. 0.0 in 1% MeOH, Rf of 0.23 in 5% 

MeOH), a likely indication of an amide bond. Ninhydrin also stained an area 

corresponding to impurities thought to come from the resin, possibly indicating the 

solution which contains the product is not fully devoid of triphenyl phosphine residue, 

leading to some purification issues. This being said, based on the above TLC data, there 

seemed to be no significant differences in content between the solid and liquid when 

looking at the TLC. 

 So, in order to separate the possible product from the rest of the components, 

column chromatography was carried out, with 1% MeOH in DCM as the first elution 

solvent, and then 5% MeOH in DCM as the second elution solvent. Twenty-eight 0.5 mL 

portions were separated, and all underwent TLC in 5% MeOH in DCM and stained with 

ninhydrin to identify the components. The first few fractions contained the resin residue, 

and were thus discarded. In the 10th-12th  fractions, the ninhydrin deeply stained spots of 

Rf 0.25. Fractions 13-28 showed no significant staining at all. The 10th-12th fractions were 

then combined, an IR and 1H NMR spectra were taken. Infrared spectroscopy revealed 

peaks at 1739, 2950, and 3050 cm-1, which indicate a carbonyl (slightly off the range of 
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an amide), sp3 hybridized carbons attached to hydrogen atoms, and sp2 carbons linked to 

hydrogen atoms, respectively. The 1H NMR spectra were taken, and a few impurity peaks 

were more noticeable in comparison to the previously taken 1H NMR spectra of the solid 

and liquid portions previously examined. The spectra revealed a singlet peak at 3.70 and 

5.3 ppm, and a multiplet at 7.37 ppm, corresponding to the hydrogens attached to the 

ester carbon, the alpha hydrogen of the carbonyl, and the aromatic rings, respectively. 

However other peaks were observed indicating the presence of an impurity. Based on 

this, it seems as though the intended product α-(benzoylamino)-phenylacetic acid methyl 

ester 26 was being formed in approximately 7% yield, but the side product α-amino 

phenylacetic acid methyl ester 27 might also be produced as well, most likely due to the 

presence of ambient water in the reaction. The sample of product isolated here was 

consumed in IR and 1H NMR analysis and further identification or purification was not 

possible. 

 

 Previous literature on the subject of the Vilarrasa reaction use reaction times of 

around 24 hours in refluxing toluene, as this was found to increase yield of the reaction.7 

Thus, it was decided to execute the microwave reaction at 110 oC, but this time for 4 h to 

determine if yield would be increased, and show a correlation between reaction time and 

yield. If any correlation between reaction time and yield was observed, it can be assumed 

that increasing the reaction to even greater amounts of time shown in previous literature 

would further enhance the production of yield. A TLC was then performed on the 
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reaction mixture. A compound at Rf of 0.80 appeared, corresponding to impurities 

associated with the resin. A mixture with Rf of 0.34, which stained dark brown when 

placed in ninhydrin is presumably the amide bonded product 26. At the time this thesis 

was being written, however, purification of the product was not complete. 

Conclusion 

 In the SN2 formation of the α-azido substituted methyl esters 21 and 23, a 

significant decrease in yield was observed when moving from 2-bromo-acetic acid 

methyl ester 21 to α-bromo-phenylacetic acid 23 as the reagent. This difference in yield 

can be attributed to the presence of the benzene ring, which causes a much greater steric 

setback for the reaction, as the sodium azide has a much harder time attacking the 

brominated carbon at the correct angle for the SN2 mechanism. One could hypothesize 

that this same steric hindrance can be carried over to the Vilarrasa portion of the reaction, 

but that data was not able to be utilized in this experiment due to the solubility of product 

25 in the aqueous wash layer. 

  Thus, it can be inferred that the use of microwave irradiation with regards to the 

Staudinger-Vilarrasa reaction is creating the intended product based on the spectral data. 

However, because the product is in solution rather than on the resin, the product must be 

fairly hydrophobic so that it is not lost in the aqueous layer when washing with NaOH.  

 The impurities in the final product may be related to the resin impurities and the 

presence of ambient water in the reaction solution. The presence of water in the reaction 

may lead to amine formation rather than creating the desired amide bond. Since the 

reaction is normally done on the 24 h time scale, our low yields may be attributed to the 

fact that our time scale for the microwave-irradiated Staudinger-Vilarrasa coupling is 1 to 
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4 h, and not yet optimized. This being said, more research utilizing microwave irradiation 

with the use of a solid-phase in this area of peptide synthesis is necessary, as the intended 

product was believed to be in our final solution utilizing an easier and less toxic 

procedure. Optimization of the reaction is possible, and just needs to be more thoroughly 

investigated under longer time periods and under more controlled conditions.   

General Methods 

 All reagents were purchased from Sigma-Aldrich or Acros and used without 

further purification. The resin was purchased from Nova Biochem. All Infrared spectral 

data were taken using Nicolet Avatar 300-FT-IR. All 1H NMR spectroscopy was taken on 

a 250 MHz Bruker AVANCE DMX Spectrometer. The Vilarrasa coupling reactions were 

irradiated using a Discover® CEM Microwave. All TLC plates used were of Polygram® 

silica gel, made by Macherey-Nagel. 

Experimental Methods 

Preparation of Azide Compounds 22 and 24 for Staudinger reaction. 2-Bromo-acetic 

acid methyl ester 21 or α-bromo-phenylacetic acid methyl ester 23 (10 mmol) and 18-

Crown-6 (1 mmol) were added to sodium azide (25 mmol) in acetone (5 mL). The 

mixture was stirred for 4 h at room temperature. Reaction was diluted with water (5 mL) 

and extracted three times with ether (5 mL), then dried with MgSO4, and then filtered 

through suction filtration. The solvent was removed in vacuo. Reaction isolated a yellow, 

oily liquid 22 and a brown, oily liquid 24.  

2-azido-acetic acid methyl ester (22): (from 2-bromo-acetic acid methyl ester 21) 98% 

yield. 1H NMR (250 MHz, CDCl3, δ): 3.90 (s, 2H, N3-CH2-C-), 3.81 (s, 3H, -O-CH3) ; IR 

(cm-1): 2950, 2108, 1748. 
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 α-azido-phenylacetic acid methyl ester (24): (from α-bromo-phenylacetic acid methyl 

ester 23) 74% yield. 1H NMR (250 MHz, CDCl3, δ): 7.37 (m, 5H, Ar), 4.9 (s, 1H, N3-

CH-C-), 3.74 (s, 3H, -O-CH3); IR (cm-1): 3025, 2950, 2112, 1740. 

 

Optimization of Staudinger Reaction: The triphenylphosphine resin 10 (1.1 equiv. per 

resin loading) was suspended in 5 mL of THF or toluene for 5 min. Compound 22 or 24 

(0.5 mmol) was added and stirred for 100 min at room temperature. Thin-layer 

chromatography and IR spectroscopy was used to measure the progress of the reaction. 

The elution conditions were 5% MeOH in DCM. The TLC plates were stained with 

ninhydrin or phosphomolybdic acid to characterize reaction progression. 

Combined Staudinger-Vilarrasa Reaction: Compound 22 or 24 (0.5 mmol) was added 

to a triphenylphosphine resin 10 (1.1 equiv. per resin loading), which was soaked in 

solvent (5 mL) for 5 min and then stirred for 100 min at room temperature. Benzoic acid 

(0.5 mmol) was then added and the reaction placed in a microwave reactor (times and 

temperatures vary, see results section). Thin-layer chromatography was then performed 

on the product and developed in 5% MeOH in DCM. The reaction solution was then 

washed four times with 1 M NaOH (5 mL each wash) to remove excess benzoic acid. 

Product then washed with Et2O (10 mL) and dried. 1H NMR was then taken.  

N-benzoyl-glycine methyl ester (25): GCMS revealed no peaks corresponding to 

possible product molecular weights. 1H NMR revealed no relevant peaks in their spectra. 

α-(benzoylamino)-phenylacetic acid methyl ester (26): 7.9% yield. 1H NMR (250 
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MHz, CDCl3, δ): 7.37 (m, 5H, Ar), 5.3 (s, 1H, NH-CH-C-), 3.70 (s, 3H, -O-CH3), 

Hexane and unidentified impurities; IR (cm-1): 3050, 2950, 1739. 
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Appendix A: Spectral Data 

22 1H NMR 
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22 IR Spectroscopy with Residual H2O 
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24 1H NMR 
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24 IR Spectroscopy 
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26 1H NMR Solid Portion 
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26 1H NMR Liquid Portion 
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26 1H NMR After Column Chromatography (Fractions 10-12) 

 



Ryan Schmidtz 
 

30 
 

26 IR Spectroscopy After Column Chromotography (Fractions 10-12) 
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