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INTRODUCTION 

Prostate cancer is the second leading cause of cancer death in American 

men. The disease prognosis is significantly limited by the finite therapeutic 

treatments. The limited treatment options are made worse by the significant 

reduction in the quality of life that often results from the severe side effects 

produced by these treatments.1 Therefore, any improvements of current 

treatments would be advantageous to the clinical setting. Recently, TREK-1, a 

tandem-pore domain (K2P) potassium channel, has been shown to be 

upregulated in prostate cancer, but absent in normal prostate tissue.2 The 

observation that TREK-1 expression is correlated with tumor malignancy 

suggests that TREK-1 may be a possible target for the development of novel 

drugs that target prostate cancer. Interestingly, other subtypes of the K2P family 

also have upregulated expression in several other types of malignancies.2, 3, 4

The K2P Family of Ion Channels  

 

These observations have prompted many research laboratories to characterize 

the role of TREK-1 in cancer cells. However, in order to explore the role of 

TREK-1 in cancer cells, pharmacological tools selective for TREK-1 need to be 

developed. Specifically, a large-scale screen is needed to identify molecules that 

selectively modulate TREK-1.  

Potassium ion channels are large multi-subunit proteins that include: 

voltage-gated potassium channels (KV), inwardly rectifying potassium channels 

(Kir), and the tandem-pore domain potassium channels (K2P).5  
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The K2P family was first identified in 1996, and since then, researchers 

have been working to characterize the distinction between the subtypes.6 K2P 

proteins possess two tandem P (pore-forming) domains. The P domain is a 

highly-conserved twenty amino acid motif that discriminates for potassium ions.5 

P domains are assembled in sets of four to create a functional potassium 

channel, and their arrangement is what distinguishes the different potassium 

channel families. Whereas the K2P family members contain two P domains per 

subunit and form functional channels as dimers, other potassium channel 

families have only one P domain and function as tetramers.5 Structural 

differences between the K2P

Within the known fifteen subtypes of K

 family and other potassium channels could 

potentially be exploited to develop molecules that selectively target members of 

the family, such as TREK-1. 

2P, TREK-1 is known as a 

polyunsaturated fatty acid (PUFA) and stretch-activated potassium channel.7 

TREK-1 has low basal activity compared with other members of K2P family.5 

However, this receptor can be strongly activated upon application of arachidonic 

acid; this activation is reversible and concentration-dependent. The effect is 

specific to unsaturated fatty acids, including oleate, linoleate, arachidonate, 

eicosapentaenoate, and docosahexanenoate.5 In contrast to the long, lipophillic 

activators, the small molecule, riluzole, is also capable of channel activation.8 

Other pharmacological agonists include inhaled anesthetics such as halothane 

and isoflurane.4 Activation of the channel can also be caused by environmental 

changes including internal acidification, shear stress, cell swelling, and negative 
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pressure and physical stretch to the cell membrane.3 Few inhibitors of the 

channel have been identified.  Galladium and quinidine specifically inhibit TREK-

1 activity.3

 In addition to TREK-1, Other K

  

2P channels have been shown to be 

overexpressed in several malignancies. TASK-3, a close relative of TREK-1, is 

amplified in 10% of breast cancers and is overexpressed at a higher frequency in 

colon and metastatic prostate cancer.9, 10 One study suggests that TASK-3 

overexpression in breast tissue may contribute to tumorgenesis by promoting 

cancer cell survival in poorly oxygenated areas of solid tumors.11 Similarly, 

TREK-1 has the ability to become activated during an ischemic episode to 

protect neuronal function.12 It is hypothesized that during brain ischemia, 

endogenous arachidonic acid is released, intracellular pH becomes more acidic, 

and neurons swell. These pathological alterations all contribute to activation of 

TREK-1, resulting in hyperpolarization, decreased excitotoxicity, and reduced 

neuronal damage.12 It is possible that the gene that codes for TREK-1, KCNK2, 

may be a tumor survival gene and that TREK-1 upregulation is an adaptation for 

the cell or solid prostate cancer tumor to cope with a hypoxic environment.2

Drugs that Target Ion Channels 

  

Several classes of ion channel agonists and antagonists have been 

developed, and these modulating drugs are used in therapeutic treatments of 

disease states such as epilepsy, hypertension, diabetes, and chronic pain.13 Of 

particular relevance to this study is the development of ion channel modulating 

compounds that have potential as cancer treatments.14 For example, the 
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compound, SKF96365, an inhibitor of a calcium release–activated Ca+2 (CRAC) 

channel, has been shown to inhibit breast tumor metastasis in mouse models.15

Identifying Selective Modulators of TREK-1 

 

Uncovering new treatments that target ion channels clearly have the potential to 

improve chemotherapy directly or by enhancing the efficacy of existing agents. 

The discovery of specific activators/inhibitors of this receptor needs a 

highly efficient identification strategy because the current gold standard for 

modulator characterization, electrophysiology, is exceedingly costly and time 

inefficient. A method commonly employed to make drug discovery more efficient 

is known as High-Throughput Screening (HTS). The goal of HTS is to be able to 

take widely diverse chemical agents and analyze them in a designed assay both 

accurately and rapidly. The field of HTS greatly relies on automation to make the 

process more efficient, accurate, and manageable. Although there are several 

advantages and recent improvements made to HTS, the main limitation that still 

exists is data analysis and ‘hit’ determination.16

 Current assays for TREK-1 activity are incompatible with HTS.

 A ‘hit’ is best characterized as a 

lead candidate that gives a desired result from a screen. Further analyses of lead 

candidates are required to rule out the potential for false positives and negatives.  

17

HYPOTHESIS 

 Thus it is 

the goal of this work to develop methods for screening TREK-1 channel activity 

modulators (agonist/antagonist). 

It is hypothesized that TREK-1 potentiates tumor growth in prostate 

cancer. Developing a screen to identify molecules that modulate TREK-1 function 
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will provide tools for determining the role of TREK-1 in prostate caner and 

potentially lead to the development of novel prostate cancer therapy. 

OBJECTIVE 

The overall goal of this project is to develop a high throughput screening 

assay to identify molecules that either inhibit or activate TREK-1. Validation of 

TREK-1 expression and function in the selected cultured prostate cell culture 

model system is necessary prior to developing an HTS platform.  

MATERIALS & METHODS 

The expression of TREK-1 was quantified by Western blot analysis in the 

prostate cancer (PC3) cell line. The activity of TREK-1 was measured by the flux 

of potassium ions across the cell membrane using a fluorescence-based 

detection assay known as Fluorescence Imaging Plate Reader (FLIPR). Using 

both of these assays jointly allow for inferences concerning the activity of TREK-

1 to be made. 

Cell Culture  

The PC3 human prostate cancer cell line was obtained from American 

Type Culture Collection (Rockville, MD). Cells were cultured in Ham’s F-12K 

medium (Sigma, St Louis, MO) with 10% fetal bovine serum (FBS) (Glibco). Cells 

were routinely passaged every week with 1x TripLE Select (Glibco). All cell lines 

were maintained at 37°C in a humidified atmosphere of 5% CO2

Western Blot 

. 

Growth media was removed from cultured cells and then the cells 

trypsinized with TripLE Select.  Growth media was added to the cell solution to 
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neutralize the trypsinization process when detachment of cells was complete. 

This cell solution was centrifuged to create a pellet and then the solution was 

removed. This pellet was washed with PBS in triplicate and stored at -80°C for 

later use. When used, pellets were dissolved with ice-cold homogenization buffer 

(Roche lysate product # 04719964001) with 1:100 dilution of Halt Protease 

Inhibitor Cocktail (Pierce). Sonification for 20 seconds in triplicate of the lysate 

was used for cell disruption. The membrane fraction was purified by 

centrifugation at 20,000 xg for 30 h at 4°C.  

A protein assay protocol (Bio-Rad) was used to quantify protein content in 

lysate.18 This was a dye-binding assay in which a differential color change of a 

dye (Coomassie Brilliant Blue G-250) occurs in response to various 

concentrations of protein. The absorbance maximum for an acidic solution of 

Coomassie Brilliant Blue G-250 dye shifts from 465 nm to 595 nm when binding 

to protein occurs.18

Proteins were separated by SDS-PAGE on a 10-14% gel (Lonza). 

Prestained protein standards (Bio-Rad) were used as a protein ladder. Samples 

were blotted onto nitrocellulose (Bio-Rad), and the membrane blocked with 1% 

bovine serum albumin in TBS/0.1% Tween 20. TREK-1 was detected with a 

polyclonal rabbit antibody raised against a portion of the NH2-terminal tail of the 

channel (Alomone Laboratories), followed by goat anti-rabbit IgG conjugated with 

horseradish peroxidase (Santa Cruz). The immunoreactive bands were 

 A spectrophotometer was used to collect absorbance. Beer’s 

law was applied for accurate quantification of protein concentration after 

development of a standard curve. 
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visualized by incubation with enhanced chemiluminescence reagent (Qiagen). 

Equal loading of samples was monitored by measuring the abundance of actin 

on the same membrane. 

Blots were stripped using Abcam’s medium stripping solution [1.5 g 

glycine, 100 mg SDS, 1ml Tween 20, pH 2.2, quantity to 100ml ultrapure 

water].19

 

 Membranes were incubated for two 10-minute washes of medium 

stripping solution, then two 10-minute washes of PBS, followed by one 5-minute 

wash of Tris buffer solution and 0.1% Tween 20 (TTBS), and one 5-minute 

TTBS. After the wash, the blot was prepared for re-blocking with primary and 

secondary antibodies. 

Western Blot Analysis  

Visualization of immunoreactive bands was performed using 

chemiluminescence and captured an AlphaInnotech digital imager. Quantification 

of the bands was completed with PDQuest software which determines the value 

of intensity of each band marked by TREK-1 antibody. 

Fluorescence Imaging Plate Reader (FLIPR)  

 A membrane polarization assay from Molecular Devices was assessed for 

use as an indicator of TREK-1 activation in the PC3 prostate cancer cell line. 

This assay uses fluorescence detection in a fluorescence imaging plate reader 

(FLIPR, Molecular Devices). In this assay, changes in cell membrane potential 

control the partitioning of a fluorescent indicator dye into and out of the cell, with 

use of a cell impermeable fluorescence quencher. The properties of the two 

separate compounds in an in vitro experiment allow the indicator dye to escape 
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the inhibitor, thus more dye in the cell results in an increase in measured 

fluorescence.  

 Media used was phenol red-free DMEM/F12 (Sigma #D2906) that was 

made with 10% FBS (Gibco) to plate PC3 cell lines. Cells were plated 6.4 x 104 

cells/well in 100ul of media 14-hours before the experiment in 96-well flat-bottom 

black plates with clear bottoms (Costar #3603) and incubated in 5% CO2 at 37°C 

overnight. FLIPR Membrane Potential Assay (R8042) was purchased from 

Molecular Devices which contains Blue Dye and Hank’s BSS + 20mM Hepes. 

Before placing on plate reader, Blue Dye was reconstituted with 10 ml of Hank’s 

BSS buffered with 20 mM Hepes and 100ul of solution was placed on top of 

media in each well. This was incubated at room temperature (22°C) for 1 hour. 

All compounds tested were stored as stock solutions in ethanol and were diluted 

in  10X PBS [1.37M NaCl, 101.6mM Na2HPO4, 17.6mM KH2PO4, 

FLIPR Analysis  

pH 7.4] 

containing either 30 mM or 100 mM KCl prior to conducting experiments. 

FlexStation II (Molecular Devices) was used to read the fluorescence 

output. Methodology for instrument setup included setting SoftMax Pro 4.8 

Software to do a “Flex” kinetic assay. Fluorescence detection parameters 

included: excitation wavelength 530 nm, Emission wavelength 565 nm, and 

Emission cut-off 550 nm. A MatLab analysis program was used to plot the 

average of sample replicates versus time. The program then determines the 

lowest point (minFL) between points 3-54 seconds (provided drug is added at 

point =20 seconds) and picks the highest point (maxFL) between points 3-54 
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seconds of the plotted averages. The difference between maxFL and minFL 

becomes the new mean difference in fluorescence. The standard deviation was 

also calculated. The program then performs a t-test on the all of the mean 

differences in fluorescence of each sample. This was compared to the controls to 

determine significance. 

RESULTS & DISCUSSION 

Protein Analysis of TREK-1 
 

The Western blot method was chosen for its ability to quantify TREK-1 

protein expression. This method has the ability to measure proteins that are 

actively being maintained in the cell membrane. The use of a Western blot is a 

gold standard for protein quantification and an appropriate tool for TREK-1 

detection. The Figure 1 shows an immune blot for TREK-1 and actin in the PC3 

cell line. 

The only antibody manufactured to target TREK-1 protein for Western blot 

analysis has non-specific binding to several other proteins in PC3 cells, as 

apparent in Figure 1A. In response to the non-specific binding of the antibody, 

the manufacturer created a negative control antigen to provide evidence that the 

antibody was targeting TREK-1. This antigen was incubated with the primary 

antibody before application to the membrane. The antigen is designed to prevent 

binding of TREK-1 antibody to TREK-1 protein. If the imaged band corresponding 

to TREK-1 was absent in the incubation with antigen (compared to antibody 

incubation alone) it can be inferred that TREK-1 is present and interacting with 

the antibody, confirming TREK-1 expression in PC3 cells. However, as shown in 
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Figure 1C, the absence of a band after incubating with the primary antibody with 

the antigen was not observed.  

Another concern when performing a Western blot to probe for TREK-1 

protein was determining an appropriate loading control for comparison.  A 

loading control is a ubiquitous protein that is measured on the same blot as the 

studied proteins to verify that equivalent amounts of protein are loaded in each 

lane.19 Based on the molecular weight of available loading controls, two different 

loading controls could have been used for TREK-1 quantification: actin (43 kDa) 

and GAPDH (37 kDa). Due to TREK-1 protein’s size (45 kDa), it was important to 

allow sufficient band separation during SDS-PAGE for distinguishing TREK-1 

from the loading controls. Although GAPDH would be better resolved from 

TREK-1 by molecular weight, it has been shown to vary widely in expression 

levels across different cell lines and was therefore not ideal for comparison.21

Because actin and TREK-1 proteins are too similar in size and TREK-1 

has non-specific binding, the two proteins cannot be differentiated conclusively 

from one another. It cannot be determined when looking at Figure 1A, if the 

TREK-1 antibody is non-specifically binding to similar sized proteins such as 

 

Therefore, actin was used as a loading control for the purpose of quantification. 

The blot shown in Figure ID was re-probed for actin and imaged, after stripping 

TREK-1 primary antibody. This figure shows that there is less actin protein 

compared to TREK-1 in Figure 1A, although it is possible that some protein was 

lost during the stripping process. 
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actin or appear to be expressed at a higher concentration than what exists within 

the cell membrane. 

The factor limiting the detection of TREK-1 is the antibodies’ lack of 

specificity for the TREK-1 receptor.  The antibody used for the purpose of TREK-

1 quantification in this study failed to be sufficiently selective. Therefore, it is 

necessary to use additional methods to better confirm TREK-1 expression in PC3 

cell line.  

TREK-1 Activation 

The FLIPR assay was selected to measure TREK-1 activity based on its 

ease of use, the ability to conduct several experiments in a short time frame, and 

HTS compatibility. Other accepted methods to measure channel activation are 

extremely limited due to time and training requirements. The most common 

alternative method to measure membrane potential involves electrophysiology 

and often requires several months (or years) to master its use. Patch-clamp 

electrophysiology in mammalian cells is still the gold-standard assay for 

measurements of ion channels.22

The FLIPR assay is unique in its mechanism of action. The indicator dye 

used in this assay is a derivative of the potential-sensitive dye, bis-(1,3-

dibutylbarbituric acid) trimethine oxonol (Dibac

 However, electrophysiological measurements 

are not compatible with HTS, since only a few compounds can be screened on 

an individual cell at any given time.  

4(3) dye, or bis-oxonol).23 Until 

FLIPR, Dibac dyes had been limited by the excessive time necessary for 

incubation which ultimately leads to cell toxicity.23 Molecular Devices, Inc. 
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created two separate formulations for the Membrane-Potential Assay that require 

less incubation time which helps maintain the viability of the cells and helps 

produce higher quality of data. The systems combine the indicator dye with a dye 

quencher that inhibits the indicator dye from fluorescing when not inside the cell. 

The mixture of dyes helps to increase the possibility of a successful assay with a 

specific cell line/ion channel.

The fluorescent indicator dye in the kit is a lipophilic, anionic dye that can 

partition across the cytoplasmic membrane of live cells dependent upon the 

potential across the plasma membrane. The quenching dye does not enter the 

cell but masks all extracellular fluorescence of the indicator dye.

24 

23

When cells are depolarized, more dye enters the cells, causing an 

increase in fluorescence signal.

 Therefore, 

during application of these compounds to the cells, baseline fluorescence was 

measured and no significant change in fluorescence occurred unless the 

electrical potential equilibrium is disrupted. This could occur by either mechanical 

and/or pharmacological means. 

23 The dye crosses the cell membrane passively 

because the fluorescent dye is anionic and is not believed to be carried via a 

transporter. Conversely, when the cells are hyperpolarized, dye exits the 

cells, resulting in a decrease in fluorescence signal.23

Due to the nature of TREK-1, if potassium is at higher concentration 

outside the cell and the protein is activated, the channel will attempt to equilibrate 

the potassium concentrations by pulling potassium into the cell. The influx of 

potassium will increase the membrane potential resulting in an increase of dye in 
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the cell, with a concomitant increase in fluorescence measured. Since potassium 

flux could be affected by the activity of other potassium channels, the assay was 

optimized to establish specific activation of TREK-1 using known agonists and 

antagonists. The assay was calibrated through the use of carefully controlled, 

high concentration doses of potassium to induce potassium influx in addition to 

either TREK-1 activators (expected to further increase potassium influx) or 

inhibitors (expected to result in diminished potassium influx).  

It is important that the activators and the inhibitors used in this assay were 

relatively selective for TREK-1 so that TREK-1 activation could be discriminated. 

Known TREK-1-specific activators, docosahexaenoic acid (DHA) and 

eicosapentaenoic acid (EPA), were used to limit interactions with other 

potassium receptors.3 EPA and DHA are both long chain fatty acids and can 

potentially increase membrane permeability to potassium. In addition to PUFAs, 

riluzole, another known activator of TREK-1, is a much smaller compound 

without the capability of inserting itself into the membrane. For this reason, 

riluzole was used as a TREK-1 activator in the fluorescence assay. Quinidine, a 

known non-specific inhibitor of TREK-1, was used as the antagonist when 

conducting dose-response curves.

TREK-1 Activation – Preliminary Results 

3 

The FLIPR assay was optimized for assessing TREK-1 channel activity. 

Preliminary testing using known agonists DHA and EPA was necessary to 

determine whether the FLIPR platform could be used to measure the membrane 

potential activity for the prostate cancer PC3 cell line (Figure 2). 
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Preliminary findings, as shown in Figure 2, help validate the hypothesis. 

Within seconds of addition of an agonist and potassium ions, an instantaneous 

depolarization occurred. In the presence of a TREK-1 activator, the increase in 

fluorescence was significant when compared to the control. An increase in 

fluorescence was also observed in the agonist-free controls; however, this 

fluorescence signal change was not significant when compared to lower drug 

concentrations (Table 1). There are many factors contributing to why an increase 

in signal baseline was observed for the controls in the absence of an agonist. 

Stress on the cells from additional pressure changes during pipette application of 

control solution could have potentially resulted in activation of TREK-1 since 

pressure and shear stress opens the channel. Another explanation for this 

observation could be from a cellular response to an increase in ethanol 

concentration. Reported observations demonstrate cellular activity changes in 

ethanol concentrations less than 0.05%.25 

A confounding issue observed upon analysis of the preliminary results 

came from a decreased fluorescence signal at higher drug concentrations. At 20 

µM concentrations of both DHA and EPA, the signal was determined to be 

equivalent to that of the control. However, it has been reported that 

concentrations of up to 100 µM of DHA lead to activation of TREK-1.

It is also possible that there was a 

cellular response to equilibrate potassium concentrations. Due to the presence of 

these potential factors, controls were performed in triplicate. 

26 Although 

not previously reported, it was hypothesized that the drug might act upon off-

target sites, thus mimicking an "antagonist" effect at high concentrations. This 
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was an interesting observation, and it was a consistent trend which appeared to 

be reproduced in other unrelated cell lines tested including MCF-7 and MDA-MB-

231 breast cancer cell lines. Therefore, it was determined to be due to another 

factor. It is possible that the receptors were saturated with compounds at these 

higher concentrations but with inadequate extracellular potassium to elicit a 

response required to produce the level of depolarization necessary for an influx 

of the dye. If this was true, there are two adjustments that should be made to the 

assay: either increase the potassium content or decrease the drug concentration. 

When accounting for the amount of potassium in the current drug design, 

there was not a significant difference in ion concentration at baseline compared 

to post-drug addition. Potassium accounted for approximately 5.6 mM potassium 

from the cell media (calculated from the buffer composition) and the FLIPR dye. 

After the drug addition, there was only an overall 7.8 mM potassium difference. 

Most electrophysiological studies with the FLIPR assay recommend a difference 

of 15 mM potassium.23

TREK-1 Activation – DHA, EPA, & Riluzole 

 Therefore, an adjustment of the potassium content was 

necessary to produce greater signal. An increase of potassium was made to 

ensure that after application of the drug, there would be a 15 mM potassium 

concentration difference. A reduction in drug concentrations also led to a 

decrease in observed fluorescence. Therefore, this procedural optimization 

eliminated the anomaly observed at high drug concentrations. 

 After accounting for the potassium concentration, results improved for 

EPA (Figure 4), but still persisted when DHA was used (Figure 3). It is possible 
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that there is still not enough of a potassium gradient post-drug application of 

DHA. However, because the structure of DHA is closer to arachidonic acid (AA) 

than EPA and AA is known for its potent activation of TREK-1 (Figure 7), 27

 For comparison with the PUFAs, the small molecule riluzole (Figure 7) 

was tested to compare fluorescence responses. Riluzole demonstrated a 

consistent dose-dependence and exhibited significant responses at all 

concentrations tested when compared to control (Figure 5). It is hypothesized 

that the effects observed are not necessarily due to cell activity but due to a 

chemical interaction with the dye and/or media upon treatment. 

 it is 

likely that DHA is a more potent activator of TREK-1 than EPA. This indicates 

that DHA requires more available potassium at test concentrations to see 

anticipated effects. It is also possible that DHA is more capable inserting itself 

into the cell membrane than EPA due to having a longer carbon chain, which 

would increase its lipophilicity. If DHA were inserting itself rather than acting on 

the receptor, this could disrupt the cell membrane and result in either TREK-1 

activation or potentially another compensating mechanism that resists membrane 

depolarization.  

TREK-1 Activation – Negative Control 

When using fluorescence drug assays, it is important to verify that the 

drugs do not interact with the fluorescent dyes in the absence of cells. If an 

interaction occurs, this can indicate either a false-positive or negative response. 

Molecules fluoresce based upon energy state relaxation and is dependent upon 

conformation of the structure. DHA could be interacting with the FLIPR dye 

Table 2 
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resulting in decreased fluorescence when there are higher drug concentrations 

present. Figure 6 shows that there is potentially an interaction occurring between 

DHA and the dye. It is also possible that the observed decrease in fluorescence 

after drug addition is a dilution effect on the dye rather than a quenching of the 

fluorescent molecule. However, the change in fluorescence is very significant 

and lends itself to being attributed to a physical interaction. 

In-depth chemical analysis to determine the DHA’s interaction (Figure 6) 

with the dye is difficult to perform. Because the fluorescent dyes are premixed, 

there is no way to determine if the dye interaction with DHA is due to the 

associated complex of the quencher and indicator or by a single component. It is 

possible that a decrease in fluorescence is due to promotion of the ionic 

association between the indicator and quencher, or that DHA aids in the 

quenching of the indicator. However, it is plausible that a combination of the two 

mechanisms exists. 

TREK-1 Activation – Antagonist Assay: Riluzole & Quinidine 

 Riluzole produced the most reliable data for this platform (Figure 5). The 

smaller compound, when tested, lacked the support for other underlying 

mechanisms that explain observations noted with the PUFAs. This molecule 

produced cleaner data; therefore, future studies of the FLIPR can be performed 

using riluzole to produce an appropriate HTS for TREK-1. 

 To sufficiently determine that riluzole is acting on TREK-1, an inhibitor of 

the receptor is necessary to block the actions of the drug so that its activity can 

be verified as ligand-mediated. As stated earlier, there are no specific 
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antagonists for TREK-1, but quinidine at high concentrations (IC50 = 100µM) 

results in TREK-1 activation.1

 Dose-response curves are extremely difficult to conduct when known 

agonists and antagonists lack specificity for the target. This makes interpretation 

challenging to determine which parameters to adjust to produce more reliable 

data. From this data, riluzole concentration should be increased in the assay. 

Further analysis should be performed to assess the validity of the results 

gathered. 

 Table 4 lists riluzole’s change in fluorescence, 

observed in PC3 cells at specific concentrations as well as in the varying 

concentrations of quinidine. Unfortunately, no reversible inhibition was observed 

for riluzole in the presence of quinidine.  

CONCLUSION AND FUTURE DIRECTIONS 

The utility of an HTS assay is limited by the selectivity of the assay. In the 

case of TREK-1, there are no known selective inhibitors of the channel, and 

therefore, an HTS assay for TREK-1 cannot be produced with the assurance of 

differentiating the individual channel from other related potassium receptors. 

However, using the FLIPR assay to create a platform that is selective for 

potassium channels can still assist in the discovery of activators and inhibitors of 

TREK-1. Screening compounds through this method can then produce a more 

finite list of molecules to be tested in electrophysiology studies to confirm or deny 

TREK-1 activation. Future discoveries from this methodology can then be 

integrated into the FLIPR assay to improve its selectivity for the channel. 
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For the purposes of developing an HTS, there are several challenges 

associated with conducting the FLIPR assay. First, to ensure that only potassium 

channel activation is occurring, the assay must be designed to limit other channel 

involvement. One potential way to solve this would be to remove or limit 

uninvolved ions such as magnesium and calcium in assay solutions. The 

solutions applied during these experiments contained the activating and inhibitory 

compounds in diluted potassium ion solutions. However, not all ions can be 

completely removed from the solutions. This is because a balance of ions needs 

to exist inside and outside the cell to maintain a proper electrochemical gradient. 

Without the minimum required ions, a cell will not be permitted to perform the 

necessary biological activities, and TREK-1 activity will not be accurately 

depicted.  

The second challenge with the FLIPR assay was how to measure 

specifically for TREK-1 ion channel activity, because this assay measures the 

activity of all potassium channels. One method to discriminate between particular 

ion channel activities is through the use of pharmacological agents. The 

expectation was that by measuring a dose response with highly-selective TREK-

1 agonists and antagonists, the fractional potassium flux activity due to TREK-1 

could be measured. However, it is still possible that the selective agents could be 

facilitating undiscovered reactions with other ion channels and thus, interfering 

with measurements.  

However to facilitate solutions to these problems, future plans could 

involve using genetically modified cell lines to create cells with and without 
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TREK-1 receptors. A comparison of response between the two cell lines could 

help differentiate TREK-1 specific activities and modulators when screening 

libraries. There are two commonly practiced methods to genetically modify the 

cell lines: insertion of a gene for human TREK-1 to up-regulate its protein 

expression or the use of short interfering RNA (siRNA), a gene silencer, directed 

at knocking down TREK-1 expression. Depending on the cell line enlisted for the 

foundation of the screen, one method may be more optimal to use than the other. 

For example, in the case of PC3 cells, TREK-1 expression has been 

documented, 2 so the use of commercially available siRNA may be more 

appropriate. However, this method may be only partially effective at eliminating 

gene expression and is highly dependent on the cell line used.28

With regard to the work presented here, future tool developments could 

easily improve the methodology of this study. For instance, it would be beneficial 

to improve TREK-1 immunodetection for Western blot analysis.  One way to 

accomplish this would involve producing a protein-tag-fused recombinant TREK-

1 to serve as a more specific epitope, and then using an antibody against that 

epitope for detection rather than TREK-1 for enhanced specificity. If the 

 Depending upon 

the amount of overexpressed TREK-1 in PC3 cells and the efficiency of siRNA in 

this particular cell line, gene silencing could produce a poor model to be used for 

comparison. This is why it is beneficial to produce better tools to quantify TREK-1 

in specific cells lines so that data can be quantitative in nature. That 

notwithstanding, until these new tools are produced, siRNA presents a future 

opportunity and a new direction for this project. 
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constructed epitope was sufficiently orthogonal, it would result in highly specific 

visualization of only epitope-fused TREK-1 protein.29

 The Western blot method was specifically chosen for the detection and 

quantification of TREK-1 expression in these cells due to its ability to measure 

the current protein that is actively being maintained in the cell membrane. 

Alternatively, for the purpose of quantifying TREK-1 expression in PC3 cells, 

another assay is available that measures gene transcript levels, encoding TREK-

1 protein. This method, RT-PCR, can show that TREK-1 protein has the 

capability of being expressed, but does not confirm protein expression. 

Therefore, it may not be reliable for validating TREK-1 expression because 

determining the presence of coding material does not verify that the code is 

translated into an active protein channel on the cell surface. Therefore, the use of 

a Western blot is usually the ideal method for protein visualization, but in regards 

to TREK-1, until another antibody is developed, RT-PCR may provide more 

conclusive evidence. 

 Another alternative for 

quantification of TREK-1 is reverse transcriptase-polymerase chain reaction (RT-

PCR), which measures mRNA levels rather than expressed protein. 
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APPENDIX  
 
Figures & Tables 
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< 0.01 (**) < 0.05 (*) 
‡ Denotes mean of eight replicates 
 § Represents the lowest point (minFL) between points 3-54 seconds (provided drug is added at point      
    =20seconds) and selects the highest point (maxFL) between points 3-54 seconds of the plotted  
    averages. The difference between maxFL and minFL becomes the new mean difference in  
    fluorescence 
 
 

      
      

              
               
               
          
 

Table 1 – Agonist Assay: DHA and EPA t-Test Analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Drug 
 

Concentration 
 

Mean‡ Difference in FL 
(RFU)§

Mean
  

‡ Difference in FL 
of control (RFU)§

P –value 
  

DHA 20 µM 227395 231427 0.86 
 10 µM 360476 231427 ** 
 5 µM 465987 231427 ** 

EPA 20 µM 230357 231427 0.92 
 10 µM 388085 231427 ** 
 5 µM 538153 231427 ** 
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< 0.01 (**) < 0.05 (*) 
‡ Denotes mean of eight replicates 
 § Represents the lowest point (minFL) between points 3-54 seconds (provided  
    drug is added at point =20seconds) and selects the highest point (maxFL)  
    between points 3-54 seconds of the plotted averages. The difference between       
    maxFL and minFL becomes the new mean difference in fluorescence 
 
 

      
      

              
               
               
          
 

Table 2 – Agonist Assay: DHA t-Test Analysis 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Drug 
 

Concentration 
 

Mean‡ Difference 
in FL (RFU)§

Mean
  

‡ Difference in 
FL of control (RFU)§

P –value 
  

DHA 2.50 µM 193335 101771 ** 
 1.25 µM 210946 101771 ** 
 625 nM 205901 101771 ** 
 312 nM 209364 101771 ** 
 156 nM 205772 101771 ** 
 78 nM 213207 101771 ** 
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 < 0.01 (**) < 0.05 (*) 
 ‡ Denotes mean of eight replicates 
 § Represents the lowest point (minFL) between points 3-54 seconds (provided drug is added        
    at point =20seconds) and selects the highest point (maxFL) between points 3-54 seconds  
    of the plotted averages. The difference between maxFL and minFL becomes the new mean    
    difference in fluorescence 
 
 
       
       
              
                
                
           
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Drug 
 

Concentration 
 

Mean‡ Difference 
in FL (RFU)§

Mean
  

‡ Difference in FL 
of control (RFU)§

P –value 
  

EPA 10.00 µM 236894 123392 ** 
 2.50 µM 220832 123392 ** 
 1.25 µM 232165 123392 ** 
 625 nM 212318 123392 ** 
 312 nM 227373 123392 ** 
 156 nM 213578 123392 ** 
 78 nM 237785 123392 ** 

Table 3 – Agonist Assay: EPA t-Test Analysis 
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         Table 4 – Antagonist Assay: Riluzole +/- Quinidine t-Test Analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
< 0.01 (**) < 0.05 (*) 
‡ Denotes mean of eight replicates 
§ Represents the lowest point (minFL) between points 3-54 seconds (provided drug is added at point =  
   20 seconds) and selects the highest point (maxFL) between points 3-54 seconds of the plotted averages.  
   The difference between maxFL and minFL becomes the new mean difference in fluorescence 

 
 
 

Drug 
 

Concentration 
 

Presence of 
Quinidine 

Mean‡ Difference 
in FL (RFU)§

Mean
  

‡ Difference in 
FL of control (RFU)§

P –value 
  

Riluzole 20 µM N/A 270682 113523 ** 
 10 µM N/A 254453 113523 ** 
 5 µM N/A 246234 113523 ** 
 2.5 µM N/A 233408 113523 ** 
 1.25 µM N/A 209144 113523 ** 
 626 nM N/A 232773 113523 ** 
 313 nM N/A 206306 113523 0.07 
 156 nM N/A 203628 113523 0.33 
 78 nM N/A 175393 113523 * 
 2.5 µM 800 µM 231177 211162 0.11 
 2.5 µM 400 µM 200883 211162 0.57 
 2.5 µM 200 µM 232180 211162 0.27 
 2.5 µM 100 µM 207157 211162 0.85 
 2.5 µM 50 µM 314819 211162 ** 
 2.5 µM 25 µM 200766 211162 0.55 
 2.5 µM 12.5 µM 213871 211162 0.82 
 2.5 µM 6.5 µM 213945 211162 0.82 
 2.5 µM 3.2 µM 203339 211162 0.52 
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Drug/Controls applied at twenty seconds and diluted in 116.4mM K+ and 1% EtOH in absence of cells  

10X PBS [1.37M NaCl, 98.8mM KCl, 101.6mM Na2HPO4, 17.6mM KH2PO4, pH 7.4] 
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Figure 7: TREK-1 Modulators 
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