
Butler University
Digital Commons @ Butler University

Scholarship and Professional Work - LAS College of Liberal Arts & Sciences

1-1-2005

Guest Editorial: Special Issue on Software,
Maintenance and Evolution
Panos K. Linos
Butler University, linos@butler.edu

Follow this and additional works at: http://digitalcommons.butler.edu/facsch_papers
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the College of Liberal Arts & Sciences at Digital Commons @ Butler University. It has been
accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler University. For more
information, please contact fgaede@butler.edu.

Recommended Citation
IEEE Transactions on Software Engineering. "Guest Editorial: Special Issue on Software, Maintenance and Evolution (with Mark
Harman and Bogdan Korel) v. 31 no. 10 October 2005

http://digitalcommons.butler.edu?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/facsch_papers?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/las?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/facsch_papers?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F89&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fgaede@butler.edu

Guest Editorial: Special Issue on
Software Maintenance and Evolution

Mark Harman, Bogdan Korel, and Panagiotis K. Linos

�

1 SOFTWARE MAINTENANCE

SOFTWARE maintenance and evolution continues to play a
vital role in the development of software systems. It is

widely acknowledged that the majority of development
effort, and thereby expenditure, is allocated to postinitial
release activity. This activity, which takes place after the
software has seen its first release, is known as software
maintenance (or software evolution).

For many years there has been an international effort
among researchers and practitioners to control the costs
associated with software maintenance and evolution and to
improve the quality of the processes and products associated
with this vital activity. The problems in this area are
particularly challenging because they require experience
and expertise that spans the entire spectrum of work on both
software engineering and computer science and beyond.

Software maintenance encompasses human elements of
software engineering, which require psychological, statis-
tical, and empirical evaluation. It involves algorithms,
methods, and techniques which require a deep under-
standing of all activities in the software development life
cycle. The algorithms and tools that support software
maintenance often manipulate software to support its
evolution, with the consequence that correctness is a
paramount concern. The systems that form the subjects
for this work are often the largest and most complex
currently known, raising the additional challenges of
scalability and robustness.

2 THE 20TH IEEE INTERNATIONAL CONFERENCE

ON SOFTWARE MAINTENANCE

In 2004, The IEEE International Conference on Software
Maintenance (ICSM) celebrated its 20th anniversary. Since
its inception in 1983, ICSM has evolved into an international
forum for researchers, practitioners, educators, technology
transfer experts, project managers, tool developers, and

users who explore current issues facing the computing
community. Every year ICSM attracts people from acade-
mia, government, nonprofit organizations, and the software
industry.

For the first time since 1998, ICSM 2004 was colocated
with the 10th IEEE International Symposium on Software
Metrics (Metrics 2004). In addition to the colocation with
Metrics 2004, ICSM 2004 was also colocated with a number
of workshops and colocated events which have sprung up
around the main conference and which provide a focus for
particular activities associated with software naintenance
and evolution. In 2004, these colocated workshops included
the Ninth IEEE Workshop on Empirical Studies of Software
Maintenance (WESS ’04), the Sixth International Workshop
on Web Site Evolution, the Fourth International Workshop
on Source Code Analysis and Manipulation (SCAM ’04),
and Software Technology and Engineering Practice (STEP).

3 IN THIS SPECIAL ISSUE

In 2004, the ICSM program chairs, Mark Harman and
Bogdan Korel, selected 38 papers for inclusion in the
proceedings from 122 submissions. All papers were
refereed by at least three referees. Of the 38 papers
submitted, eight were selected for consideration for this
special issue. These papers were extended from their
conference version and reviewed according to the IEEE
Transactions on Software Engineering reviewing process.
Seven of the papers successfully completed the review
process and are contained in this special issue. The rest of
this editorial provides a brief overview of these seven
papers.

The term “crosscutting concern” refers to functionality
that is scattered among several softwaremodules.When such
a concern (or functionality) needs to be modified, software
engineers need to detect the code that implements it, which is
not a trivial task. The term Aspect-Oriented Software
Development (AOSD) has been introduced for addressing
the problem of crosscutting concerns and various aspect-
oriented languages have been created that implement the
conceptof anaspect,which facilitates theprocessof capturing
crosscutting concerns in a localized manner. Two of the
papers in this special issue concern AOP.

The paper entitled “On the Use of Clone Detection for
Identifying Crosscutting Concern Code” considers clone-
detection as a potential technique for identifying cross-
cutting concerns. In this paper, the authors claim that clone
detection techniques appear to be a promising approach for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 10, OCTOBER 2005 801

. M. Harman is with the Software Engineering Group, Department of
Computer Science, King’s College London, Stran, London WC2R 2LS, UK.
E-mail: mark@dcs.kcl.ac.uk.

. B. Korel is with the Computer Science Department, Illinois Institute of
Technology, 10 West 31st Street Street, Chicago, IL 60616.
E-mail: korel@iit.edu.

. P.K. Linos is with Butler University, Fairbanks Center for Communica-
tions and Technology, Department of Computer Science and Software
Engineering, 4600 Sunset Avenue, Indianapolis, IN 46208-3485.
E-mail: linos@butler.edu.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

identifying certain types of crosscutting concerns. In order
to support their hypothesis, they present the results of a
case study performed on the source base of a lithography
system of approximately 10 million lines of C code. More
specifically, their research findings support the hypothesis
that some crosscutting concerns are implemented by similar
pieces of code (i.e., clones), which are spread throughout
the system. In fact, their study shows that such code pieces
can comprise up to 25 percent of the code size. This paper
provides some groundwork for future research toward the
automation of aspect mining activities based on clone
detection.

In the paper entitled “Refactoring the Aspectizable
Interfaces: an Empirical Assessment,” the authors focus on
a specific kind of crosscutting concerns, referred to as
aspectizable interfaces. Aspectizable interfaces are interfaces
that crosscut the principal decomposition. The paper reports
on an experimental assessment of the effects of migrating the
implementation of the aspectizable interfaces to aspects. The
results of this study suggest that the migration of the
aspectizable interfaces produces code that is easier to under-
stand during the execution of maintenance tasks.

As with software engineering in general, some aspects of
software maintenance have an inherently empirical char-
acter because it is important to attempt to provide empirical
evidence to support the claims made for the methods,
approaches, and techniques which software maintainers
may adopt to improve software maintenance. In “An
Experimental Investigation of Formality in UML-Based
Development,” the authors present the results of two
experiments on the impact of using a formal constraint
language (the Object Constraint Language, OCL) with
Unified Model Language (UML) models, contrasting this
with the use of natural language to express constraints. The
results suggest that, while adequate training is necessary,
the use of OCL offers significant benefits.

In software maintenance, it is important to be able to
automate and semi-automate the process of analysis and
characterization of the evolution of software systems.
Methods, algorithms, and approaches which provide
automated support for human analysis of the evolutionary
process postsoftware delivery are therefore highly impor-
tant. Two papers in this special issue concern techniques for
supporting the process of human analysis of software
evolution.

The paper entitled “Analyzing the Evolutionary History
of the Logical Design of Object-Oriented Software” presents
a method for analyzing the evolution of object-oriented
systems from the point of view of their logical design. The
method is based on a heuristic domain-specific structure
differencing algorithm that recognizes the design-level
changes. The paper reports on a case study that uses the
presented method to determine the evolution profiles for
classes of a large Java system.

Program spectra characterize a program’s behavior
inside the black box. In the paper entitled “Checking Inside
the Black Box: Regression Testing by Comparing Program
Spectra,” the authors present a new class of program
spectra referred to as value spectra. Value spectra differ-
ences between program versions are used to expose internal

behavioral differences during regression testing. The paper
reports on an experimental study that evaluates the
presented value spectra.

Fault detection is a vital aspect of software engineering
and software maintenance and assessment of approaches
that may predict the presence of faults remains a pressing
concern. Two of the papers in this special issue address the
problem of finding faults for software as it evolves over a
series of releases.

The paper entitled “Studying the Fault-Detection Effec-
tiveness of GUI Test Cases for Rapidly Evolving Software”
addresses some shortcomings of modern smoke regression
techniques, such as the inability to automatically retest
Graphical User Interfaces (GUIs). To this end, the authors
present various empirical results and discuss solutions to
this problem. More specifically, the contributions of this
paper include the identification of requirements for
GUI smoke testing and the formalization of a GUI smoke
test as a sequence of events. In addition, the authors discuss
and use DART (Daily Automated Regression Tester), which
is an automated regression testing process. Finally, the
results of their empirical studies demonstrate the feasibility
of the overall smoke testing process in terms of execution
time and storage space. Some other equally important
results of this research indicate that smoke tests cannot
cover certain parts of the code and that having comprehen-
sive test oracles may balance off the lack of large smoke test
suites.

In “Empirical Validation of Object-Oriented Metrics on
Open Source Software for Fault Prediction,” the authors
present an empirical investigation into the bug-prediction
capability of the widely studied object-oriented metrics of
Chidamber and Kemerer for open source software. The
paper uses regression analysis, decision trees, and neural
nets to investigate the metrics’ bug-predicting ability and
considers the evolution of Mozilla over seven releases.

Mark Harman
Bogdan Korel
Panagiotis K. Linos
Guest Editors

Mark Harman is a professor of software
engineering and the head of the Software
Engineering Group in the Department of Com-
puter Science, King’s College, London. He has
published extensively on program slicing, trans-
formation, and testing. More recently, he was
instrumental in founding the field of search-
based software engineering, which concerns the
application of meta-heuristic search algorithms
to problems across the spectrum of software

engineering activity. He is a member of the editorial board of seven
journals in the software engineering area, including the IEEE Transac-
tions on Software Engineering.

802 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 10, OCTOBER 2005

Bogdan Korel is an associate professor in the
Computer Science Department at the Illinois
Institute of Technology, Chicago. His research
interests are in software maintenance, software
testing, and automated software analysis. His
major research contributions are in software
slicing and automated test generation.

Panagiotis (Panos) K. Linos is a professor of
computer science and software engineering at
Butler University. Before joining Butler, he was
the chairperson of the Computer Science De-
partment at Tennessee Technological Univer-
sity. He is the founder of the CeASER (Center
for Applied Software Engineering Research) and
EPICS (Engineering Projects in Community
Service) program at Butler University. His
research interests and activities focus on soft-

ware maintenance and evolution, reengineering and reuse, program
comprehension, software measurements, and metrics.

HARMAN ET AL.: GUEST EDITORIAL: SPECIAL ISSUE ON SOFTWARE MAINTENANCE AND EVOLUTION 803

	Butler University
	Digital Commons @ Butler University
	1-1-2005

	Guest Editorial: Special Issue on Software, Maintenance and Evolution
	Panos K. Linos
	Recommended Citation

