
Butler University
Digital Commons @ Butler University

Scholarship and Professional Work - LAS College of Liberal Arts & Sciences

2006

Comprehension and Maintenance of Large Scale
Multi-Language Software Applications: Open
Issues and Challenges
Kostas Kontogiannis

Panos K. Linos
Butler University, linos@butler.edu

Kenny Wong

Follow this and additional works at: http://digitalcommons.butler.edu/facsch_papers

Part of the Software Engineering Commons

This Conference Proceeding is brought to you for free and open access by the College of Liberal Arts & Sciences at Digital Commons @ Butler
University. It has been accepted for inclusion in Scholarship and Professional Work - LAS by an authorized administrator of Digital Commons @ Butler
University. For more information, please contact omacisaa@butler.edu.

Recommended Citation
Proceedings of the 22nd international IEEE Conference on Software Maintenance. (P. Linos, with K. Kontogiannis and K. Wong)
"Comprehension and Maintenance of Large Scale Multi-Language Software Applications: Open Issues and Challenges. Philadelphia,
Sept. 2006

http://digitalcommons.butler.edu?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/facsch_papers?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/las?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.butler.edu/facsch_papers?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.butler.edu%2Ffacsch_papers%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:omacisaa@butler.edu


Comprehension and Maintenance of
Large Scale Multi-Language Software Applications

Kostas Kontogiannis
University of Waterloo, Canada

kostas@swen.uwaterloo.ca

Panos Linos
Butler University, USA

linos@butler.edu

Kenny Wong
University of Alberta
kenw@cs.ualberta.ca

Abstract

During the last decade, the number of software appli-
cations that have been deployed as a collection of compo-
nents implemented in different programming languages and
paradigms has increased considerably. When such applica-
tions are maintained, traditional program comprehension
and reengineering techniques may not be adequate. In this
context, this working session aims to stimulate discussion
around key issues relating to the comprehension, reengi-
neering, and maintenance of multi-language software ap-
plications. Such issues include, but are not limited to, the
formalization, management, exploration, and presentation
of multi-language program dependencies, as well as the de-
velopment of practical toolsets for automating and easing
the comprehension and maintenance of multi-language soft-
ware.

1. Introduction

Today, software engineers often use multiple languages
to implement a single software application. In 1998, Ca-
pers Jones documented in his book that at least one third
of the software applications at that time were written us-
ing two different programming languages [1]. In addition,
he estimated that ten percent of all applications incorporate
three or more languages. Today, these percentages are much
higher.

There are several advantages associated with the devel-
opment of multi-language (ML) software applications. For
instance, database queries can be handled easily and effi-
ciently when various query languages such as SQL are em-
bedded in general purpose languages such as C++ and/or
Java. In addition, reuse of existing software is often an im-
portant reason behind building ML software. For example,
predefined and pretested libraries implemented in procedu-
ral languages may be included and used by newer software
applications developed using object-oriented languages. As
another notable example, Microsoft’s Visual Studio .NET

environment is widely used to develop ML (i.e., combina-
tion of Visual Basic, C#, C++, etc.) Windows and/or Web
applications.

ML software must evolve constantly to accommodate
changes in the application domain. This evolution demands
continuous modifications that may increase software com-
plexity and eventually reduce quality. Therefore, the need
for broad research efforts and open discussions related to
the maintenance and evolution of ML software becomes a
compelling issue.

2. Background

It has been documented that one important factor in
understanding, reengineering, and maintaining programs
written in just one programming language is the detection
of program dependencies [6]. A program dependency is
present when one entity within a program relates to other
entities within another piece of code. For instance, a pro-
gram written in one language may call functions or access
other entities of code written in another language. To date
there has been little standardization effort in this area and,
as a consequence, the resulting ML programs become diffi-
cult to understand and maintain.

Moreover, it has been shown that the visualization of
such program dependencies can facilitate program compre-
hension and reengineering activities [2]. Finally, recent pro-
totype tools for measuring and visualizing the complexity of
ML software in the VS.NET environment have been devel-
oped [3].

3. Open issues for discussion

The working session will focus on the following open
research issues related to the comprehension, reengineering,
and maintenance of ML software.

Formalization and modeling



ML systems pose a whole new range of challenges on
extracting information and modeling dependencies between
the components. Some of these challenges relate to the use
of different language constructs with varying semantics, and
the diverse designs such ML systems possess. Some of the
interesting questions that arise in the formalization of ML
system dependencies include how we deal with different
language semantics, whether we need to define specialized
metamodels for ML system dependencies, and whether we
need to adapt existing mathematical theories (e.g. graph
theory, set theory) to better formalize and capture ML sys-
tem dependencies.

Extraction, discovery, and storage
It is not enough to have program understanding tools that

consider each language independently as an isolated island.
We need to also bridge these islands to form a more com-
plete understanding. For example, programmers often need
to follow control flows in software, and this activity should
not be constrained by language boundaries. Thus, an impor-
tant issue is how to manage ML dependencies, including in-
tegrated fact extraction for constituent individual languages,
static and dynamic analysis to discover ML dependencies,
pattern recognizers that exploit cross-language linkage con-
ventions [4, 5], and suitable data models and efficient stor-
age mechanisms to represent the gathered information.

Exploration, queries, and knowledge management
Programmers often need to follow control and data flows

in software systems, without being constrained by language
boundaries. Thus, we need effective graph navigation tech-
niques to explore dependencies in ML software. Also im-
portant are queries to match patterns that span languages, to
discover high-level graph abstractions, or reveal potential
anomalies or inconsistencies such as malformed or missing
stubs in linkage mechanisms. If changes are necessary, a
key challenge is how to relate corrections to graph informa-
tion back to the original code.

Presentation and usability
Another challenge is how to transfer the discovered in-

formation into the minds of software engineers to assist with
their required evolution tasks. Many issues in software vi-
sualization arise, including appropriate presentations, aes-
thetic criteria for graph layout [7], and the relation of in-
formation presented across multiple views. To effectively
highlight key issues in ML systems, we need abilities to fil-
ter and progressively disclose information.

Tool support
Processing large volumes of information that can be ex-

tracted from ML systems requires the use of sophisticated
tools and tractable algorithms. Consequently, some of the

challenges that need to be answered include: the type of
tools that are required to understand, analyze and maintain
ML software; the coordination and architecture model that
is required for such tools to interoperate and share data; and
how new tools can be seamlessly integrated in such an en-
vironment (possibly using a publish-subscribe paradigm or
service-oriented architectural style.

Impact on software maintenance processes
The use of tools to analyze, maintain, and evolve large

ML systems is bound to have an effect on maintenance
and evolution process models. Some questions that arise
in ML analysis and maintenance include the type of metrics
or other quantifiable means to reason about the evolution
process, to measure the impact of ML software on evolu-
tion effort, and to establish a common measurement frame-
work. Finally, an interesting challenge is to investigate the
issues pertaining to designing and conducting effective ex-
perimental studies that can evaluate different ML system
analysis and maintenance techniques in practical settings.

4. Working session activities

We expect that this session will attract researchers with
an interest in understanding, reengineering, and maintain-
ing multi-language software applications.

The working session will start with a few pre-invited
short anchor presentations. The speakers will review in ad-
vance the open issues outlined in Section 3 and present their
views during their talks.

After each presentation, we will allow for some clarifica-
tion questions and a brief discussion. The major objective is
to structure the working session around an interactive brain-
storming period where the attendees will lay a roadmap of
possible research directions and challenges to address the
problem of analyzing, maintaining, and evolving large ML
applications.

Furthermore, all results produced by the working session
will be consolidated in a final report, which includes a copy
of all presentation slides, a summary of important points
made during the discussions, a suggested research frame-
work, and a list of session participants and possibly inter-
ested researchers. We will post this report at the conference
Web site for post-conference networking and collaboration.

5. Background of organizers

Panos Linos is a Professor of Computer Science and
Software Engineering at Butler University. Before joining
Butler, Panos was a Professor and the Chair of the Com-
puter Science Department at Tennessee Technological Uni-
versity. His research activities focus on the areas of soft-
ware maintenance, reengineering, and comprehension of



software. While at Butler University, he founded and cur-
rently directs the Center for Applied Software Engineering
Research (CeASER), where he conducts funded research
with his students, colleagues, and local information tech-
nology companies. He has also founded the EPICS (Engi-
neering Projects In Community Service) program at Butler
University.

Kostas Kontogiannis is an Associate Professor at the De-
partment of Electrical & Computer Engineering at the Uni-
versity of Waterloo, Canada. He is working in the areas of
software reverse engineering, software reengineering, and
software systems integration. He has been the recipient
of three IBM University Partnership Awards and a Canada
Foundation for Innovation (CFI) Award. He is also a visit-
ing scientist at the IBM Center for Advanced Studies in the
IBM Toronto Laboratory.

Kenny Wong is an Associate Professor in the Depart-
ment of Computing Science at the University of Alberta.
His main areas of research include software comprehen-
sion, software evolution, and software visualization. This
research includes building and using integrated environ-
ments for reverse engineering, and devising strategies to un-
derstand and evolve diverse software systems (supported in
part by an Eclipse Innovation Grant). He is General Chair of
the 2007 International Conference on Program Comprehen-
sion in Banff, and Program Chair of the 2008 International
Conference on Software Maintenance in Beijing.

References

[1] C. Jones. Estimating Software Costs. McGraw-Hill, New
York, 1998.

[2] P. Linos, Z. Chen, S. Berrier, and B. O’Rourke. A tool for un-
derstanding multi-language program dependencies. In Pro-
ceedings of the 11th IEEE International Workshop on Pro-
gram Comprehension (IWPC 2003), pages 64–72, May 2003.

[3] G. McCullough, E. Maier, and P. Linos. A metrics tool for
multi-language .NET software applications. In Proceedings
of the 18th Undergraduate Research Conference, pages 42–
43, April 2006.

[4] D. Moise and K. Wong. Extracting and representing cross-
language dependencies in diverse software systems. In Pro-
ceedings of the 12th Working Conference on Reverse Engi-
neering (WCRE 2005), pages 209–218, November 2005.

[5] D. Moise, K. Wong, H. Hoover, and D. Hou. Reverse engi-
neering scripting language extensions. In Proceedings of the
14th IEEE International Conference on Program Comprehen-
sion (ICPC 2006), pages 295–304, June 2006.

[6] N. Wilde and R. Huitt. Maintenance support for object-
oriented programs. IEEE Transactions in Software Engineer-
ing, 18(12):1038–1044, 1992.

[7] K. Wong and D. Sun. On evaluating the layout of UML dia-
grams for program comprehension. Software Quality Journal,
14(3), 2006. To appear.


	Butler University
	Digital Commons @ Butler University
	2006

	Comprehension and Maintenance of Large Scale Multi-Language Software Applications: Open Issues and Challenges
	Kostas Kontogiannis
	Panos K. Linos
	Kenny Wong
	Recommended Citation


	icsm06.dvi

