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Modeling Mechanisms 

Stuart Glennan 
 

Department of Philosophy and Religion 
Butler University 

4600 Sunset Avenue 
Indianapolis, IN  46228 

Abstract 
Philosophers of science increasingly believe that much of science is concerned with 
understanding the mechanisms responsible for the production of natural phenomena.  An 
adequate understanding of scientific research requires an account of how scientists 
develop and test models of mechanisms.  This paper offers a general account of the nature 
of mechanical models, discussing the representational relationship that holds between 
mechanisms and their models as well as the techniques that can be used to test and refine 
such models.  The analysis is supported by study of two competing models of a 
mechanism of speech perception. 
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 The past several years have seen the growth of a mechanisms movement in the 
philosophy of biology and in the philosophy of science more generally.  Mechanist 
philosophers of biology believe that mechanisms are the key to understanding biological 
phenomena.  Perhaps because of the realist tendencies of the philosophers involved, most 
of the literature has focused on the properties of mechanisms themselves and has not said 
much about the relationships between mechanisms and their models or theoretical 
representations.  My goal in this paper is to redress this deficiency and to sketch an 
account of the relationship between mechanisms and our models of them.  I will describe 
a particular kind of model, called a , and will discuss the relationship between this sort of 
model and other models that have been discussed in the philosophical literature.  I will 
then offer a detailed case study of two competing models of a phenomenon in the field of 
speech perception.  This case study will illustrate several important issues regarding 
mechanical models.  It will give substance to the claim that models are related to 
mechanisms via similarity relations; it will demonstrate how it is possible to make 
inferences about mechanisms when one cannot directly study the properties of the 
mechanism’s parts; and it will illustrate the connection between mechanistic inference 
and the problem of underdetermination. 

I. Mechanisms and Mechanical Models 
 There is a large literature devoted to the nature of biological models and the 
strategy of model building in biology (e.g., Levins, 1968; Lewontin, 1974; Wimsatt, 
1987), but such discussions generally have proceeded without any detailed analysis of 
what models are.  To the extent that there is an accepted “theory of models,” philosophers 
of biology (e.g., Beatty, 1981; Lloyd, 1994) have adopted the view of models developed 
by advocates of the semantic view of theories (see Suppe, 1974; 1989) 

Most advocates of the semantic view of theories characterize models in terms of 
state spaces.1

                                                 
1 Others (e.g., Suppes, 1960) characterize models as set-theoretic structures, but this 
approach has not received much discussion among philosophers of biology. 

  According to the state space approach, the state of a physical system can be 
characterized by a set of state variables—variables measuring the values of various 
physical magnitudes.  The set of logically possible states of the system can be identified 
with the set of all possible combinations of values of each of the variables, and these 
combinations in turn are treated as vectors in the state space.  The dynamical behavior of 
a modeled system can be characterized in terms of the trajectory of the system through 
this vector space over time.  Physically possible changes in the state of a system may be 
characterized by laws of succession, while physically possible combinations of values of 
state variables can be characterized by laws of coexistence (Suppe, 1989). 
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 The state space representation is powerful and flexible, and it is hard to imagine 
anything that scientists might call a model that could not be represented in this way.  
Indeed, this type of representational format is borrowed from physics, and has been used 
in biology as well (Lewontin, 1974).  But while state space models provide a convenient 
formalism, this characterization is too abstract to give much insight into the nature of the 
relationship between a model and the system modeled or into the strategies of model 
building, testing and revision. 

Bill Wimsatt has claimed that “[a]t least in biology, most scientists see their work 
as explaining types of phenomena by discovering mechanisms . . .’ (Wimsatt, 1972, p. 
67). If Wimsatt is right about this, it seems plausible that most of the models developed 
by biologists will be models of mechanisms.2

 A mechanical model is (not surprisingly) a model of a mechanism, so to present 
an account of mechanical models, a first step is to offer some analysis of the concept of 
mechanism.  In an earlier paper (Glennan, 2002) I have offered the following definition of 
a mechanism: 

  Accordingly, we can develop a deeper 
understanding of the nature of modeling in biology by developing a theory of mechanical 
models.   

(M) A mechanism for a behavior is a complex system that produces that behavior by 
the interaction of a number of parts, where the interactions between parts can be 
characterized by direct, invariant, change-relating generalizations.3

 While I shall not defend this definition here, a few clarifications are in order.  In the first 
place, mechanisms 

 

underlie behaviors

 Mechanisms can have behaviors of a variety of forms.  Perhaps the most familiar 
are mechanisms that respond to inputs with outputs (e.g, Coke machines or neurons), but 

.  The behavior that the mechanism underlies, or, 
more simply, the behavior of the mechanism, is what the mechanism does.  A heart is a 
mechanism for pumping blood, a Coke machine is a mechanism for dispensing Cokes in 
return for coins, and so on.  Craver and Darden (2001) emphasize the same point about 
mechanisms, referring to what the mechanism does as the “phenomenon” that the 
mechanism produces. 

                                                 
2 This claim I would argue is true of many domains beside biology. It should be true of 
any domain where explanations or predictions are sought by examining the organization 
and interaction of parts of complex systems – including much of physics and chemistry, 
psychology, and economics. 
3 This definition reflects a slight modification from a definition I proposed earlier 
(Glennan, 1996).  I have replaced an appeal to laws with the more specific notion of a 
“direct, invariant, change relating generalization.  This analysis of mechanism is 
substantially in agreement with a number of other analyses, including those of Bechtel 
and Richardson (1993) and Machamer, Darden and Craver (2000). 
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there are also, for instance, mechanisms that maintain systems in stable states or 
mechanisms that produce a periodic behavior (e.g., the mechanism that explains Old 
Faithful’s eruptions. Many mechanisms are, like hearts and Coke machines, designed to 
behave as they do, but one can equally well talk about mechanisms underlying behaviors 
that, like the eruptions of Old Faithful, are not the product of design.   
 The second part of the definition that requires explanation is the notion of ‘direct, 
invariant, change-relating generalizations.’  These generalizations characterize the causal 
interactions between parts of mechanisms.  They function as laws in Mitchell’s (1997) 
pragmatic sense, though, unlike laws on the positivist conception, they depend in 
essential ways on particulars, are subject to breakdowns, and are not of unrestricted 
scope.  The term ‘change-relating generalization’ is borrowed from Woodward (2000), to 
indicate a generalization that characterizes how a change in the property of one or more 
parts brings about a change in the property of another part.  It is meant to exclude 
generalizations that hold true in virtue of common causes, global constraints, 
conservation principles, and the like. If models were represented in terms of laws 
describing transitions in a state space, these laws would be the laws of succession.  The 
most typical form for this kind of generalization would be a differential equation, though 
many change relating generalizations might describe discrete changes.  The stipulation 
that the generalizations be direct

 An important feature of this conception of mechanism is that it is hierarchical (cf. 
Glennan 1996; Machamer, Darden and Craver, 2000; Craver, 2002).  The parts of 
mechanisms may themselves be mechanisms, and the change-relating generalizations 
connecting those parts may themselves be mechanical processes.  The behavior of the 
mechanism can often be described by a change-relating generalization.  We might 
describe the behavior of a simple Coke machine in the following change-relating 
generalization: “Whenever $1 is inserted and the button marked ‘Coke’ is pressed, a Coke 
appears in the slot at the bottom of the machine.”  The fact that the statement is true is 
explained by facts about how the Coke machine works.  Generalizations of this kind I call 

 is meant to rule out generalizations that describe more 
remote effects.  For instance, depressing the button on the Coke machine causes a Coke to 
be dispensed, but only via the complex interaction of a number of parts.  Hence, there is 
no direct generalization connecting button presses to the dispensing of Cokes. 

mechanically explicable

 There is thus a two-way relationship between invariant generalizations and 
mechanisms.  First, reliable behavior of mechanisms depends upon the existence of 
invariant relations between their parts, and change-relating generalizations characterize 

 (cf. Glennan 1996; 1997).  As a less homely example, Mendel’s 
first law, which we might state as “Whenever a parent is heterozygous at a locus, the 
proportion of gametes produced by the parent carrying each allele will be .5,” is also 
mechanically explicable.  It follows from facts about the mechanisms used in organisms 
to produce gametes.  
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these relations.  Second, many such generalizations are mechanically explicable, in the 
sense that they are just generalizations about the behavior of mechanisms.  A single 
generalization can both be explained by a mechanism and characterize the interaction 
between parts of a larger mechanism.  For instance, Mendel’s first law is explained by the 
standard mechanisms of gamete formation, while evenly segregated gametes, produced in 
accordance with Mendel’s first law, play a part in larger mechanisms, for instance the 
mechanism by which deleterious alleles will be (generally) driven to extinction. 
 Given this understanding of what a mechanism is, we now can define a 
mechanical model: 
(MM) A mechanical model consists of (i) a description of the mechanism’s behavior (the 

behavioral description); and (ii) a description of the mechanism that accounts for 
that behavior (the mechanical description). 

The two-part characterization of a mechanism, in terms of a behavior and the mechanism 
that produces it, leads naturally to a two-part characterization of a mechanical model. The 
behavioral description is a description of the overall behavior of a mechanism.  The 
mechanical description is a description of the mechanism’s parts and their functional 
arrangement.  Another way to put it is to say that the behavior description tells one what a 
mechanism is doing, while the mechanical description tells one how the mechanism does 
it.4

 The sense in which the two parts of a mechanical model are descriptions requires 
clarification.  They are not descriptions in the sense of ‘descriptive phrases’ familiar from 
Russell’s theory of descriptions, nor indeed can they be identified as sets of sentences or 
as syntactically defined entities of any kind.  Rather, they are semantic entities, in the 
sense that there can exist many syntactically different formulations of the same 
description.  For instance, the behavioral description of an ecological model where a 
population oscillates around a carrying capacity could be presented either 
diagrammatically or by means of differential equations while still counting as the same 
description.  For one to have different behavioral descriptions, the behavior described 

  

                                                 
4   This way of expressing the relationship suggests a close affinity between this 
distinction and Marr’s (1982) distinction between computational and algorithmic 
theories. 

A number of readers have suggested that the behavioral description should not be 
part of the mechanical model.  I have adopted the two-part approach principally to 
emphasize that the behavioral description is itself a model that is only similar to the 
modeled behavior in certain degrees and respects.  In evaluating a model one must 
evaluate the adequacy of both the mechanical description and the behavioral description.  
One might alternately take the view that these descriptions are separate models, with the 
behavioral description being a “model of data” in Suppes’ (1962) sense. 
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must be different.  Thus, if in one model the oscillation of the population dampens while 
in another it does not, we have different behavioral descriptions, and hence different 
models. 

One way to look at the relationship between the behavioral and mechanical 
descriptions is as a distinction between a description of the external behavior of a 
mechanism and a description of its internal workings, but sometimes the spatial 
terminology must be construed metaphorically.  In their discussion of strategies for 
discerning mechanical structure, Bechtel and Richardson (1993) have usefully 
distinguished between decomposition and localization.  Localization is a spatial notion – 
where one identifies parts of mechanisms via their locations – while decomposition 
identifies parts of mechanisms by their functional relations.  When functions are spatially 
localizable, decomposition and localization will yield the same analysis, and as Bechtel 
and Richardson emphasize, localization can provide a powerful heuristic for the 
discovery of functional decompositions.  Functional localization can fail, however, when 
the parts responsible for particular functions are distributed in space or are not stable in 
location over time.  It should be clear, given that (M) defines mechanisms in terms of 
functional relations between parts, that in such cases it is the functional structure revealed 
by decomposition that is constitutive of mechanism. 
 The most important difference between mechanical models and state-space 
models is that mechanical models have two parts.  According to the state-space 
conception, the possible states of the system modeled are represented by the set of vectors 
in a state space, and a particular model can be understood as a curve through this space.  
As a very simple example, consider how we might construct a state-space model of an 
analog watch.  The state of the watch at a given time can be characterized by two 
variables, one representing the position of the hour hand and the other the position of the 
minute hand.  One can then plot the evolution of the state of the watch through time as a 
periodic curve in this space. From the mechanistic point of view, this description of the 
watch is only half a model of the watch.  It is, in particular, a description of the behavior 
of the watch.  What is lacking is a description of the mechanism that produces this 
behavior.  A mechanical description would characterize how the various parts of the 
watch (the battery, the quartz crystal, the hands, the internal gears, etc.) cause the hands to 
move in the way characterized by the behavioral description. 
 The internal workings of the mechanism can be represented using the state space 
approach as well.  The relevant properties of the interacting parts of the mechanism could 
be coded as state variables.  Laws of succession could be specified that express how 
changes in values of state variables representing properties of one part bring about 
changes in the values of state variables representing properties of directly linked parts.  In 
this case, the laws of succession are the change-relating generalizations referred to in (M).  
What this example shows is that the notion of a mechanical model is more restricted than 
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that of a state-space model.  Whether a state space model is a mechanical model depends 
upon what state variables are chosen, and whether the laws of succession used to 
characterize the state changes represent direct causal interactions between the parts of the 
mechanism. 
 It is possible to formulate a mechanical model using a state space representation 
but that not all state space models are mechanical models.  The requirements for a model 
being a description of a mechanism place substantive constraints on the choice of state 
variables (such as the fact that state variables should refer to properties of parts), 
parameters, and laws of succession and coexistence.  The satisfaction of these additional 
constraints is what accounts for the explanatory power of mechanical models.  The 
division between the behavioral description and the mechanical description is analogous 
to the division between explanandum and explanans.  The mechanism characterized by 
the mechanical description brings about, and hence explains, the behavior characterized 
by the behavioral description. 5

 Two further points should be made which will have significant implications for 
the subsequent discussion of testing mechanical models.  First, notice that the concept of 
a mechanism’s behavior generally presupposes a concept of normal functioning.  When 
one describes the behavior of a mechanism, one describes how it will behave if it is not 
broken.  For instance, in describing the behavior of the watch in terms of the periodic 
rotation of hands, one presupposes that the watch’s battery has not worn out and many 
other things of that sort.  The “if it not broken” clause is a kind of ceteris paribus clause 
for behavioral descriptions.  This idea of “normal function” is required even for 
mechanisms that are not the product of design or selection.  If, for instance, one describes 
the behavior of the El Ninõ mechanism, the description presupposes that the normal 
mechanism by which El Ninõ produces its effects is not disrupted by exogenous factors 
(like the earth being hit by a large asteroid). 

  If the behavioral description is a statement of a law (in 
the weak sense described above), then that law is mechanically explicable. 

 The second point is that there is a one-many relationship between behavioral and 
mechanical descriptions.  This is because the same behavior can be produced by different 
mechanisms.  A spring wound watch and a Quartz crystal watch will (relative to most 
descriptions) behave the same way, even though the mechanism that produces the 

                                                 
5 The division is only analogous.  I am adopting an ontic conception of explanation in 
which the locus of explanatory insight is “in the objects.”  It is the fact that the 
mechanism brings about the behavior, not that the mechanical description entails the 
behavioral description, which yields the explanation (cf. Glennan, 2002).  At the same 
time, we can only achieve understanding of a phenomena with the help of an adequate 
representation of the phenomena and of the mechanism that brings it about. 
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behavior will be quite different.  We shall take up the question of how to choose between 
competing models of the same behavior in the last section of this paper. 
 One of the most controversial questions in the recent literature on modeling 
concerns the relationship between models and the real systems they model.  At least since 
Levins (1968) it has been widely recognized that the models scientists use are generally 
false, in the sense that they are based on clearly false idealizing assumptions.  My view is 
that the key to understanding how false models can be genuinely explanatory is to realize 
that even a false model can provide a partial representation of a modeled system.  I follow 
Ron Giere (1988) in claiming that the representation relation exists in virtue of 
similarities in various degrees and respects between the model and the modeled system.  
Giere (1999) has usefully compared models to maps.  The most salient feature of this 
analogy is that maps, like models, represent only certain aspects of the region that is 
mapped.  Hence, there can be different maps of the same terrain, with each map bearing 
similarity relations to the terrain only in certain degrees and respects.6

 Let me conclude with a point regarding terminology.  The notion of a mechanical 
model that I have developed is closely related to what Machamer, Darden and Craver 
(2000) have called a ‘mechanism schema.’  While I concur with much of what they say 
regarding mechanism schemata, I prefer the term ‘mechanical model’ for several reasons.  
Most importantly, scientists often use the term ‘model’ to refer to thing entities I call 
mechanical models.  Also, Machamer, Darden and Craver introduce the term ‘mechanism 
schema’ in part in contrast to what they call a ‘mechanism sketch.’  Their idea is that a 
mechanism sketch is an incomplete schema – one in which the component entities and 
activities have not been completely identified.  Sketches are filled in to provide schemata, 
and schemata are what are required for mechanistic explanation.  The problem with the 
sketch/schema distinction is that it makes into a two-step process what is in reality a 
process of continuous model articulation.   

 

II. Models of Vowel Normalization 
In this section I shall apply the analysis of mechanical models to two models from 

the cognitive psychology literature on speech perception.  These models seek to explain 
the auditory processing mechanisms by which listeners adjust to variations in the 
acoustical properties of different talkers’ vowel sounds.  The process of adjusting to this 
variation is called vowel normalization

                                                 
6 There is a voluminous literature on idealization in modeling and the nature of 
representation.  See, e.g.,  Wimsatt (1987), Morgan and Morrison (1999), Bailer-Jones 
(2003) and Odenbaugh (under review). 

.  Because this case is not well known to 
philosophers, I will begin with some background on the basics of speech perception.  I 
will then describe the models, demonstrating how they both satisfy the characterization of 
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a mechanical model given in the previous section.  In the concluding section of the paper 
I will discuss experimental work that has been done to evaluate these models, showing 
how this case supports the view that models represent mechanisms only in degrees and 
respects. 

While many of the points about representation and testing could have been made 
using a variety of examples, I have chosen this case for two reasons.  First, unlike most 
paradigm cases in the literature, the parts of these putative mechanisms are, at least at this 
point, difficult to localize.  I want to show how it is possible to construct and test a 
mechanical model even in such cases.  Second, and relatedly, this case illustrates how it is 
possible to evaluate competing models of the same phenomena even when one can’t 
directly identify and manipulate the parts of the mechanism responsible.  I will argue that 
these methods, which I call methods of indirect testing, provide us with some grip on a 
methodologically interesting version of the underdetermination problem.   
 
 Researchers in speech perception seek to understand the mechanisms by which 
listeners transform acoustic signals into sequences of phonemes.7 Acoustically speaking, 
a speech signal is just a sound wave.  One way to characterize a speech signal is with an 
oscillogram, which is a plot of the wave’s amplitude over time.  An alternative way to 
characterize a wave is with a continuous spectogram.  In a continuous spectogram, the 
sound wave is decomposed into frequency components that are analyzed continuously 
from short snippets of the speech signal.  The result is a three-dimensional plot 
representing intensity (wave amplitude) at each frequency over time.  The majority of 
acoustical information required for vowel phonological recognition is coded by the wave 
spectrum, and in particular by peaks (local maxima) of intensity in the spectrum called 
formants
 Normal (i.e., non-whispered) vowels and other voiced speech sounds are produced 
by passing vibrating air from the vocal cords, which function as a forced harmonic 
oscillator, through the articulatory tract (chiefly the mouth and nose), which functions as 
resonator.  By altering physiological features of the articulatory tract (the openness of the 
mouth, the position of the tongue, etc.), a talker can change the resonant frequencies of 
the tract. 

.   

The configuration of the articulatory tract at any given time can be characterized 
by a frequency response curve.  The local maxima in this curve (i.e., the frequencies at 
which the resonator resonates) are the formants.  Physiologically, formant positions are 
determined chiefly by the shape of the mouth and lips and the position of the tongue.   
Formants are numbered from lowest to highest (F1, F2, etc.) according to the frequency 

                                                 
7 For further background on the production and perception of speech, the reader may wish 
to consult (Moore, 2003). 
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of their peak resonance.  The frequency of the formants (especially F1, F2 and F3) turns 
out to be a major determinant in the perception of different phonemes. Besides formant 
frequencies, the fundamental frequency of the wave (which is the frequency of oscillation 
of the vocal cords), called F0, also influences phoneme perception. 

The vowel perception models I shall discuss are concerned with explaining the 
ability of American English speaking listeners to identify English language vowels.  
Table 1 lists the International Phonetic Alphabet (IPA) symbols for the ten English 
vowels studied in these models: 

IPA Symbol Sample Word 
i heed 
I hid 
Ε head 
Θ had 
℘ hud 
a hod 
� hawed 
Υ hood 
u who’d 

ə ⇓ heard 
 
Table 1: IPA Symbols for American English Vowels8

 
 

 The most significant pieces of information used by listeners to recognize vowel 
sounds are the frequencies of the first and second formants.  Most listeners accurately 
recognize artificial vowels that are constructed by masking all but F1 and F2 cues from 
naturally produced vowels.  Differences in F1 and F2 intensities also correspond fairly 
closely to different places of articulation of vowels in the articulatory tract.  Front vowels 
(i.e., vowels where the tongue is positioned in the front of the mouth) like /i/ have 
relatively higher F2 frequencies than back vowels like /u/.  Low vowels (i.e., vowels 
where the tongue is positioned low in the mouth) like /æ/ have relatively higher F1 
frequencies than high vowels like /i/.  Using F1 and F2 frequencies it is possible to 
construct for a map of the speaker's vowel space.  An F1/F2 map for an average talker is 
pictured in figure 1: 

                                                 
8 For more on phonetic vowels, including information on the articulatory features that 
produce them, the reader may wish to consult the website of the International Phonetic 
Association (http://www2.arts.gla.ac.uk/IPA/ipa.html). 
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Figure 1: An Average Talker's Vowel Space9

The difficulty with this simple characterization of vowel perception is that it does not take 
into account variations in the vowel spaces across different talkers.  Because different 
talkers' F1 vs. F2 maps are different, signals that are similar with respect to F1 and F2 
frequencies can represent different vowels in different talkers.  The process by which 
listeners adjust to different talkers’ vowel spaces is called 

 

vowel normalization
 In the remainder of this section, I describe two competing models of vowel 
normalization, one proposed by L. J. Gerstman (1968) and the other proposed by A. K. 
Syrdal and H. S. Gopal (1986).

. 

10

                                                 
9 This graph is produced from average F1 and F2 frequencies collected by Peterson and 
Barney (1952) and scaled to values between 0 and 10 by Gerstman (1968).  This graph is 
identical to one that appears in Gerstman 1968 except that I have replaced Gerstman's 
notation for vowels with standard IPA symbols. 

  While my primary concern will be with vowel 

10 Unlike Syrdal and Gopal, Gerstman’s primary concern was to develop models for 
machine recognition of human vowels, but the sort of information appealed to by 
Gerstman is likely involved in human perception.  In this paper we shall, following 
Nusbaum and Morin (1992), consider Gerstman’s approach as a model for human vowel 
recognition.  
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normalization itself, it is not possible to examine this component of the auditory system 
in isolation. To evaluate different models of vowel normalization, one must first integrate 
them into models of the larger recognition process.  Models of normalization can be 
compared indirectly by comparing models of vowel recognition that incorporate different 
models of normalization.  The two models that I will describe are thus not models of 
vowel normalization alone, but models of the vowel recognition mechanism that 
incorporate a normalization component. 
 These models are competing because they represent alternative hypotheses about 
what mechanism underlies a particular behavior. The two models have a common 
behavioral description, but differ in their mechanical description.  To describe, and 
ultimately evaluate, these models, we must first examine this common behavioral 
description. 
 In the broadest sense, the behavior of a vowel recognition mechanism can be 
described by a function from acoustic signals to vowel tokens.  The acoustic signals of 
interest are segments of human-produced speech that contain vowels.  The study of 
human vowel recognition is complicated considerably by two problems.  In the first place, 
acoustic properties of vowels can be altered by the phonetic context (i.e., what consonants 
surround the vowel).  Second, human subjects will use features of the lexical, semantic 
and pragmatic context to provide additional information to aid in vowel recognition.  In 
order to isolate the acoustic features used in vowel recognition, the authors focused on the 
analysis of a limited data set produced originally by Peterson and Barney (1952).  
Peterson and Barney recorded vowels produced by 76 talkers (a mixture of men, women 
and children).  Each talker read from a randomly ordered list containing two repetitions of 
the ten words listed in table 1.  Peterson and Barney then made spectrographic 
measurements of each vowel, measuring values of F0, F1, F2 and F3.  Finally, they tested 
the intelligibility of these vowels by playing them to twenty-six listeners.  1199 of the 
1520 were unanimously recognized. 
 With respect to this data set, human listeners display good but not complete 
accuracy in recognizing vowels.  This level of performance with respect to the Peterson 
and Barney data set serves as the (partial) behavioral description of the "average" human 
vowel normalization mechanism.  A model of vowel normalization should identify 
vowels with approximately the same degree of accuracy as human listeners do.  Both the 
Gerstman and Syrdal/Gopal models satisfy this requirement.  The two models therefore 
have roughly the same behavioral description, but they offer different accounts of the 
mechanism responsible for this behavior. 

A. 

 The basic idea behind the Gerstman model is that as a talker begins to speak the 
listener’s auditory system acquires information about the F1 vs. F2 position of a small 

The Gerstman Model 
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number of vowels, called point vowels, which are used calibrate (or “tune”) the 
recognition mechanism to that talker's particular vowel space.  The model suggested by 
Gerstman is composed of four parts, which I shall call the formant frequency analyzer, 
the calibration mechanism, the normalization mechanism and the identification 
mechanism. The frequency analyzer is the part of the system that analyses a signal into a 
frequency spectrum and identifies formants.  The calibration mechanism analyzes a 
calibration signal consisting of an initial segment of a particular talker’s speech in order 
to determine the dimensions of that speaker's vowel space.  The normalization 
mechanism transforms absolute formant frequencies F1 and F2 into frequencies F1' and 
F2' that are normalized to eliminate variations between different speakers' F1 vs. F2 
spaces.  The identification mechanism uses F1' and F2' to identify the vowel token.  The 
structure of the overall mechanism is indicated in figure 2: 

Signal

F1,F2 (khz)

F1',F2' 
(normalized)

Calibrating Signal 
(speech with point vowels)

Vowel Space 
Dimensions

Vowel Token

Formant Frequency 
Analyser

Identification 
Mechanism

Calibration 
Mechanism

Normalization 
Mechanism

 
Figure 2: The Gerstman Vowel Normalization Model 

 
The distinguishing feature of the Gerstman model is that the normalization mechanism 
requires certain parameters that are not determined by the vowel signal being processed.  
It is what Nusbaum and Morin (1992) call a “contextual tuning” mechanism.  What is 
needed to tune the mechanism are signals that provide the minimum and maximum 
values of F1 and F2 for a given speaker’s vowels.  These are given by the point vowels 
(which are the leftmost, rightmost, topmost and bottommost vowels shown in figure 1).  
Using the F1 and F2 values for these vowels (the vowel space dimensions), the 
normalization mechanism can produce a normalized value of F1 and F2 for subsequent 
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vowel tokens.  The identification mechanism works by comparing the position of the 
normalized vowel (F1’, F2’) in the scaled vowel space (see figure 1) with the position of 
average vowels within that space. 
 A mechanical model is more than just a set of generalizations about the external 
behavior of a system; a model purports to describe the structure of the mechanism that 
accounts for the behavior.  Because the Gerstman model correctly classifies those vowel 
tokens which are unanimously categorized by human listeners, it passes the first test of 
accounting for the behavior of the system, at least insofar as identifying vowels in the 
Peterson and Barney data set with accuracy comparable to humans counts as predicting 
the behavior of the actual auditory mechanism.  But beyond this, what claims has 
Gerstman made about the internal structure of the auditory mechanism? 
 Figure 2 summarizes the claims about the structure of the mechanism.  
Acceptance of the model involves commitment to the view that there are four distinct 
components of the auditory mechanism that exhibit the behaviors described in the above 
paragraphs.  The internal structure of these components has been left largely unspecified.  
For instance, the calibration mechanism must in some way acquire F1 and F2 frequencies 
for point vowels, but Gerstman has not specified how these vowels are identified.  They 
would have to be identified by a mechanism that either normalizes vowels in a different 
way or does not normalize at all.  There are a number of ways in which the calibration 
mechanism might work: it might rely on other features of the vowel token besides F1 and 
F2 to identify unnormalized vowels; alternatively, it might rely on lexical or pragmatic 
information.  One might for instance suppose that a listener might rely on the fact talkers 
say fairly standard things when they first begin speaking ("Hello!” etc.) and use this 
information to help disambiguate any vowels that are initially ambiguous.  A major 
consideration in evaluating the Gerstman model is whether or not one can give plausible 
accounts of how this and the other parts of the mechanism hypothesized by that model 
might work. 

B. 

 Syrdal and Gopal (1986) have developed a model of vowel recognition that uses a 
different normalization model.  Unlike the Gerstman model, the Syrdal/Gopal model 
suggests that each vowel is 

The Syrdal/Gopal Model 

self-normalizing. In other words, the model suggests that the 
F1 and F2 values of each vowel token can be normalized by using other parts of the 
acoustic signal and do not need tuning parameters extracted from the context of the 
utterance.  Syrdal and Gopal's model is represented schematically in figure 3: 
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Feature Identification 
Mechanism

Bark Difference 
Analyser

Signal

F0,F1,F2,F3 (Bark)

Critical Bark 
Differences

Specific Bark Difference

Formant Frequency 
Analyser

Other Features

Vowel Identification 
Mechanism

Hi/Low 
Front/Back

Vowel

Critical Bark 
Difference Analyser

 
Figure 3: The Syrdal/Gopal Vowel Normalization Model 

 
Processing of each vowel, according to this model, occurs in five stages.  First, the 
acoustic signal is analyzed into formant pitches measured using a scale called the Bark 
scale.11

   < 3 Bark > 3 Bark 

  Second, differences between F3 and F2 and between F1 and F0 are calculated.  
Third, these differences are classified into one of two categories depending upon whether 
or not their difference exceeds a critical distance of 3 Bark.  Syrdal and Gopal show that 
this twofold binary classification is related to the vowel's phonetic features.  The relation 
is given by the following map: 

 F3-F2  front  back 
 F1-F0  high  mid, low 
Since this classificatory schema only distinguishes four possible categories, it is not by 
itself sufficient to uniquely identify the ten different American vowels being considered. 
Additional information is required to identify the vowels.  Syrdal and Gopal have 
analyzed critical bark differences in several other dimensions (F2-F1, F4-F2 and F4-F3) 
and determined that these measures could be used reliably to further discriminate between 
all but three pairs of vowels (/Ε/ and /æ/, /u/ and /Υ/, /a/ and /�/).  Other kinds of 
information (like vowel duration) can also be used to discriminate vowels. 

                                                 
11 Perceived pitch does not vary linearly with actual frequency of pure tones.  The Bark 
scale is one of a number of non-linear scales.  The significance of the Bark scale is 
discussed in the final section of this paper. 
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 Although Syrdal and Gopal think there is good evidence that the human auditory 
system uses binary feature classifications to minimize inter- and intraspeaker variability 
with respect to the production of vowels, they do not commit themselves to one particular 
computational model for vowel recognition.  Instead they categorize vowels using a 
number of different features including critical bark differences, absolute bark values and 
vowel duration.  They do not try to argue which of these techniques (if any) the human 
auditory system uses for feature discrimination.  For this reason I have left some of the 
inputs in the vowel identification mechanism in figure 3 unspecified.  These details turn 
out not to be significant for the kinds of tests described in the next section.  What is 
critical is the general approach to normalization and identification.  Syrdal and Gopal 
believe that these discriminations can be made based upon the structure of the signal 
being identified, regardless of what particular acoustic features are actually used to make 
binary discriminations.  This is the sense in which the Syrdal/Gopal model is self-
normalizing. 
 The Gerstman and Syrdal/Gopal models illustrate several noteworthy features of 
mechanisms and mechanical models. The most important characteristic of mechanisms is 
that they are complex structures consisting of a number of parts.  Thus, a mechanical 
model must specify the hypothesized parts of the mechanism.  The parts of the Gerstman 
and Syrdal/Gopal mechanisms are given respectively in the boxes found in figures 2 and 
3.  These diagrams do not simply specify a list of parts, but also their functional 
arrangement.  In particular, the arrows represent the causal interactions that occur 
between the different parts.  The flow chart representation I have used to summarize these 
mechanisms is certainly not the only possible way to present a mechanical model, but it is 
an especially natural one. 
 If one compares the diagrams in figures 2 and 3 with visual representations of 
more paradigmatic mechanisms, like schematics for electronic or mechanical devices, 
what is striking is that there is no indication of the size, location or arrangement of the 
parts.  Parts are instead specified functionally, that is, in terms of the causal role of the 
part within the overall mechanism.  Note that the parts are themselves complex 
mechanisms.  Their behavior is described but the mechanism underlying the behavior left 
unspecified.  This strategy has an important advantage.  By leaving out the details by 
which these functions are implemented, the model highlights the explanatorily relevant 
features of the mechanism.  The correctness of these explanations will not turn on how it 
is, for instance, that the formant frequency analyzer works, so long as there exists some 
mechanism that performs this function. 
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III. Evaluating Mechanical Models 
The Gerstman and Syrdal/Gopal models represent competing models of the 

mechanism responsible vowel normalization.  It is tempting to ask which (if either) of 
these models has gotten the mechanism right, but that question is naïve. The reason for 
this is not just that decisive evidence is hard to come by, but rather that the posited 
relationship between a model and the mechanism it models is one of similarity rather than 
isomorphic correspondence.  This similarity comes in varying degrees and respects; and 
while some authors (e.g., Hughes, 1997) argue that the concept of similarity is a vague 
and misleading, in the context of particular models, similarity claims can be spelled out in 
ways that make it unproblematic.   
 What distinguishes mechanical models from models generally is that they must 
articulate a set of components whose activities and interactions produce the phenomenon 
in question.  For models of this sort, there are a number of questions one can ask about 
respects of similarity.  We may divide these respects into two classes.  The first class 
concerns of the adequacy of the behavioral description, or simply  behavioral adequacy

1. Does the model predict (quantitatively or qualitatively) the overall behavior of the 
mechanism?  Do these predictions hold for all inputs, or only for some ranges? 

: 

The second class concerns adequacy of the mechanical description, or mechanical 
adequacy

2. Has the model identified all of the components in the mechanism? Have the 
components been localized? 

: 

3. For each component, has the model correctly identified its causally relevant 
properties – i.e., the properties whose changes figure into interactions with other 
components? 

4. Does the model provide quantitatively accurate descriptions of the interactions 
and activities of each component? 

5. Does the model correctly represent the spatial and temporal organization of the 
mechanism? 

6. If the model includes submodels of the mechanical structure of components, are 
these submodels good representations of these components? 

7. Is the mechanism identified by the model the sole mechanism responsible for the 
production of the behavior, or are there multiple mechanisms?  If there are 
multiple mechanisms, do they operate concurrently and redundantly, or do 
different mechanisms operate in different contexts? 

The distinction between behavioral and mechanical adequacy has been recognized by 
other authors.  Lloyd makes a similar distinction, where she observes that a model can 
adequately predict outcomes, but be merely understood as “calculating devices… because 
their isomorphism with the natural system is so limited” (1994, p. 148).  Similarly, as I 
have argued elsewhere (2002b) much of the debate over the adequacy of genic selection 
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models and “beanbag genetics” can be seen as a debate about whether behaviorally 
adequate genic selection models correctly represent causal mechanisms. 
 Let us now consider the adequacy of the behavioral descriptions given by the 
Gerstman and Syrdal/Gopal models.  These models were constructed after the fact, as sets 
of algorithms for correctly classifying those vowels in the Peterson and Barney dataset 
that were unanimously classified by a panel human listeners.  As such, both models are 
“observationally equivalent” to this panel of human listeners, and so it is plausible to say 
that the models meet the criterion of behavioral adequacy.  On the other hand, it is 
important to remember that this equivalence has only been tested for a very small range of 
possible inputs.  A more adequate model of the mechanism would approximate the 
behavior of human listeners for vowels spoken by a wider variety of speakers in a wider 
variety of phonetic, prosodic, syntactic and semantic contexts.  The difficulty of such a 
demand is that to emulate human speakers in such contexts would require the 
construction of models of large parts of the complex mechanisms of speech perception.  
Human listeners use higher-level information to help in speech perception tasks (See, 
e.g., Warren, 1970 on the phoneme restoration effect).  Unless these models of vowel 
recognition are embedded in larger models of speech recognition, it will not be possible 
to fully judge the behavioral adequacy of these models. 

But let us set aside the limitations on the behavioral adequacy of these models, 
and turn to their mechanical adequacy.  To the extent that both of these models “save the 
phenomena” (i.e., are behaviorally adequate), they illustrate how the relationship between 
behavioral and mechanical adequacy parallels the well-known problem of 
underdetermination. 

The classic formulation of the underdetermination problem presupposes a 
distinction between observation and theory statements.  The problem then is that any of 
an infinite number of theories (i.e., sets of theoretical statements together with bridge 
principles) may entail a given set of observation statements.  Critics of the 
underdetermination thesis (e.g., Laudan, 1990) argue that while there is an “in principle” 
logical sense in which observation will always underdetermine theory, the practical 
import of the result is overblown.   

While I agree with such assessments of the logical problem, a more interesting 
version of the problem surfaces in assessing mechanical models.  In this case, the 
problem is that multiple mechanical descriptions (analogous to theories) may entail 
similar or identical behavioral descriptions (analogous to observations).  In the case of the 
two models discussed here, the mechanical descriptions are not ad hoc constructions, but 
represent plausible competing hypotheses about the mechanisms responsible for 
observable behaviors. 

In its mechanistic version, the underdetermination problem is not a logical 
conundrum but a methodological challenge.  If two models have equivalent behavioral 
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descriptions, how does one decide between them?  There are two sorts of approaches.  
The first approach, which I call direct inference

The functional localization strategies explored by Bechtel and Richardson (1993) 
and the strategies discussed by Craver and Darden (2001) for discovering neurobiological 
mechanisms are principally strategies of this kind.   Direct inference strategies defeat the 
underdetermination problem by breaking the boundary between theory and observation.  
While the internal workings of mechanisms may not be readily apparent, they may be 
accessible via special observational and experimental methods. 

, is to try to take the mechanism apart and 
study the behavior of its parts.   

Direct inference strategies are important, and indeed a good deal of work on 
mechanisms of speech perception relies upon them.  However, there are sometimes 
circumstances in which it is impractical or impossible to dissect a mechanism.  In the case 
of high level cognitive mechanisms, the parts themselves may be complex and highly 
distributed and may defy our strategies for localization.  Moreover, in the particular case 
of speech research where we have no model organisms other than human beings, ethical 
considerations place considerable constraints on the kind of physical dissection of 
mechanisms that we might otherwise undertake.  Thus in cases such as this one must 
utilize testing techniques that allow one to make inferences about the internal structure of 
a mechanism simply by examining the mechanism’s external behavior. These techniques, 
which I call indirect inference 

 

methods, examine the behavior of the mechanism under 
non-standard conditions.  They defeat the standard underdetermination problem by 
expanding the range of behavioral information (i.e., by increasing the range of 
phenomena the models must “save”).  Placing a mechanism in non-standard conditions 
will will often cause it to behave in unusual ways—that is, it may break the mechanism.  
Observing when and how a mechanism breaks can tell one a lot about how a mechanism 
works.  One tests the models by seeing if they break in ways similar to the actual 
mechanism. 

 I shall now discuss some of the experimental evidence that can be used to evaluate 
these models, focusing on three contrasting features of the models and showing how 
techniques of direct or indirect inference can be used to evaluate them.12

                                                 
12 I discuss a broader array of features in more technical detail in Glennan 1992. 

  The first of 
these features concerns the temporal organization of the mechanism, and in particular the 
time at which information required to normalize the vowel space is acquired.  Recall that 
the basic purpose of these mechanisms is to normalize the vowel space in order to 
compensate for variations among talkers.  In the initial description of the Gerstman model 
we observed that the model uses a “contextual tuning” mechanism, whereby the listener 
acquires information about the highest and lowest F1 and F2 values for a particular 
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speaker’s vowels, and uses this information to adjust to that speaker. How this calibration 
mechanism works is left unspecified, but presumably it works by using higher level 
information (e.g., involving expectations about what people say) to make guesses as to 
what vowels are being used.  Thus, in order for a signal representing a vowel token to be 
correctly identified, the mechanism must already have been calibrated by an earlier signal.  
In contrast, the Syrdal and Gopal model supposes that the signal representing the vowel 
token is self-normalizing, in the sense that adjustments to inter-speaker variations in F1 
and F2 can be made using other features of the signal itself. 
 Nusbaum and Morin (1992) devised an experiment to test whether human vowel 
recognition depends upon a contextual turning or a non-contextual self-normalizing 
mechanism.  This experiment is an exemplar of an indirect inference technique.  Under 
normal conditions, listeners have access to both the contextual information that would 
tune a Gerstman-type mechanism and the structural features of the speech signal that 
would tune a Syrdal/Gopal-type mechanism.  Their idea was to construct a non-standard 
condition in which contextual information was removed, and to see if this would “break” 
the mechanism.  If this occurred, it would be evidence against the contextual tuning 
model. 
 To do this Nusbaum and Morin provided listeners with sequences of syllables and 
asked them to identify which of these syllables contained a target vowel.  Subjects were 
given two kinds of sequences.  In the first type of sequence, all syllables came from the 
same talker, while in the second, syllables came from different talkers.  The second 
condition then eliminated contextual cues that could be used to calibrate the mechanism. 
 Nusbaum and Morin’s experiments had mixed results.  On the one hand, they 
found no significant difference in listener’s performance in the two conditions.  This fact 
suggests that listeners do not need the context to tune their vowel normalization 
mechanism.  On the other hand, they found that listeners were considerably faster in 
making identifications in the same-talker condition.  These results lead Nusbaum and 
Morin to hypothesize that human listeners have redundant normalization mechanisms, 
with the more computationally efficient contextual tuning mechanism being used unless 
contextual clues were eliminated. 
 The second feature with respect to which we can compare these models concerns 
the features of the speech signal that are used to identify vowels.  The Gerstman model 
uses only the first and second formants, while the Syrdal and Gopal model uses additional 
information – notably the fundamental frequency (F0) and third formant (F3).  Nusbaum 
and Morin (1992) again devised an experiment that used indirect inference to determine 
how the models compared to actual auditory mechanisms in this respect.  While the 
standard data set that was used to assess the adequacy of these models’ behavioral 
descriptions contained the full range of acoustical information associated with speech 
signals, Nusbaum and Morin constructed modified signals in which F0 and F3 were 
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removed.  Listeners were presented with the modified set of stimuli and were again asked 
to identify which syllables were instances of target vowels.  Once again, they were 
presented with sequences of syllables in either a same-talker or mixed-talker condition.  
The results of these experiments were consistent with Nusbaum and Morin’s hypothesis 
of redundant mechanisms.  In same-talker condition, where contextual cues were 
available, the absence of F0 and F3 information did not impair speakers’ ability to 
recognize target vowels.  In the mixed-talker condition, where both the contextual cues 
and the F0 and F3 information were absent, there was significant degradation in the 
ability of listeners to identify target vowels.  In this condition, neither of the redundant 
mechanisms would have the parameters required to operate correctly. 
 The third and final feature which I shall discuss concerns the hypothesized 
mechanism of frequency analysis.  Both models suppose there is an initial component of 
the mechanism that analyzes the acoustic signal into pitch and formant frequencies, but 
they differ in the output of these components.  The Gerstman model proposes that these 
frequencies reflect the actual acoustic properties of the signal while the Syrdal/Gopal 
model supposes that perceived frequencies are not linear with respect to acoustic 
frequencies.  Accordingly, the two models describe the output of this component using 
different scales – a kilohertz scale for Gerstman and a perceptual scale called the Bark 
scale for Syrdal and Gopal. 
 At issue here is not the accuracy of vowel classification made by the two models, 
but the accuracy of the description of the behavior of one of the mechanism’s parts.  This 
part of the mechanism can be studied more directly than other hypothesized components.  
First, it is possible to study pitch perception apart from phoneme recognition by 
performing experiments in which subjects are asked to discriminate pure pitches.  
Second, there is physiological evidence that the task of frequency analysis is carried out 
within the ear.  Current evidence suggests that (1) all sound intensity within a certain 
critical band of acoustic frequencies is integrated and perceived as a single pitch; (2) the 
width of this critical band is not constant over the perceptual range of the auditory 
mechanism.  (Scharf, 1970); and (3) critical band corresponds to a fixed length along the 
basilar membrane (Syrdal and Gopal, 1986).  
 There is thus substantial evidence that any vowel normalization mechanism would 
operate on perceived rather than acoustic frequencies of pitch and formants.  While in this 
respect the Syrdal/Gopal model is superior, it is interesting that the fact that the Gerstman 
model uses acoustic frequencies does not impair the model’s accuracy.  Indeed, it is 
important to recall in this connection that, because his original purpose was to develop a 
technique for machine recognition, Gerstman did not need to utilize the same frequency 
analysis mechanism that is used in the human auditory system. 
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 This is only a partial review of the evidence in favor of the two models, but it is 
enough to draw two conclusions about the testing of models generally.  First, it shows 
that methods of indirect inference make it is possible to study the properties of 
mechanisms whose parts are, for whatever reason, difficult to examine and manipulate 
directly.  Second, it shows that there is not typically a Baconian crucial experiment to 
decide between rival models.  Models can’t be falsified because models are not true or 
false, but are rather similar to the systems they model in degrees and respects of the sort 
listed at the beginning of this section.   This fact also explains why it is not possible to 
cleanly separate discovery and testing, (cf. Darden, 1991, Craver and Darden, 2001).  
Models aren’t generally thrown out after failures in crucial experiments, but are rather 
elaborated to gradually increase their degrees and respects of similarity. 

It is difficult to specify a principled way in which the degrees and respects of 
similarity and dissimilarity should be weighed against each other, and hence it may be 
difficult to say which of two models is the more similar to the modeled system.  But this 
is hardly a defect in the analysis of models presented here.  Indeed, it goes some way 
towards explaining why scientists may continue to test and articulate a number of 
different and incompatible models. 

It might be argued that my choice of models has lead to an overstatement of my 
case.  The models discussed in this paper are representations of a small part of an 
extremely complicated speech recognition mechanism, and there are reasons to believe 
that a fuller understanding of speech recognition will show that the relationship between 
vowel recognition and other parts of speech processing are more complicated than current 
models suggest.  We have also seen evidence that the mechanism responsible for this 
aspect of speech recognition appears to be redundant, so that each model tells only part of 
the story.  Moreover, except in the case of the mechanism of frequency analysis, there is 
very little direct evidence about where or how the hypothesized components operate.  
Collectively, these facts might suggest that the models in question are unusually partial 
and sketchy, an investigation of more developed models would not support my 
conclusions regarding the nature of models as representations. 

There will certainly be models in which the range of behavior is more completely 
specified, the parts and their properties more clearly identified, and the like.  In such 
cases, it may be reasonable to judge a model of a mechanism correct or incorrect.  If, for 
instance, one has a circuit diagram for a radio, it would seem possible to judge it as either 
correct or incorrect.  But even a correct circuit diagram will not be similar to the radio in 
all respects.  It will not, for instance, represent the physical size of components or the 
physical geometry of their layout on the circuit board.  Models, as Giere (1999) tells us, 
are like maps, and maps always represent only selected features of the terrain.  Equally 
important, my hunch (and it is admittedly only a hunch) is that the sorts of models one 
constructs to describe complex natural phenomena will more often be of the partial kind I 
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have described than of the sort represented by a circuit diagram.  At any rate, we should 
recognize that there is no firm line between complete and partial models (or between 
mechanism schemata and mechanism sketches), but that models undergo continuous 
processes of articulation and refinement. 

Not all models studied by scientists are mechanical models, but many are.  While 
there will always be domain specific strategies of model formulation and testing, 
recognizing the pervasiveness of mechanisms and their models will increase 
understanding of similarities in strategies across domains. 
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