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Collapsible graphs and reductions of line graphs
Zhi-Hong Chen -, Peter C.B. Lami , Wai-Chee Shiu

ABSTRACT

A graph G is collapsible if for every even subset X < V(G), G has a subgraph I" such that
G — E(¢") is connected and the set of odd-degree vertices of {’ is X. A graph obtained by
contracting all the non-trivial collapsible subgraphs of G is called the reducton of G. In
this paper, we characterize graphs of diameter two in terms of collapsible subgraphs and
investigate the relationship between the line graph of the reduction and the reduction of
the line graph. Our results extend former results in [H.-). Lai, Reduced graph of diameter
two, J. Graph Theory 14 (1)(1990) 77-87], and in [P.A. Catlin, Igblunnisa, T.N. Janakiraman,
N. Srinivasan, Hamilton cycles and closed trails in iterated line graphs, J. Graph Theory 14
(1990) 347-364].

1. Introduction

We follow the notation of Bondy and Murty [1], except that graphs have no loops. Let G be a graph. For a vertex v in G,
the neighborhood of v, written Ng(v) or N(v) is {# € V(G) | uv € E(G)}. The cardinality of N(v) is denoted by dg(v) or d(v)
and is called the degree of v in G. The smallest, respectively largest, degree of any vertex in G is denoted by 8(G), respectively
A(G). A graph is Eulerian if it is connected and every vertex has even degree. The line graph of G, denoted by L(G), has E(G)
as its vertex set, where two vertices in L(G) are adjacent in L(G) if and only if the corresponding edges are adjacent in G. An
Eulerian subgraph H of G is called a spanning Eulerian subgraph if V(H) = V(G). if G has a cycle containing every vertex of G,
then G is called Hamiltonian. A cycle of length ¢ is denoted by C;. The girth of a graph G is the length of any shortest cycle in
G. The distance between two vertices u and v of a connected graph is the minimum length of all paths joining v and v, and
is denoted by d(u, v). The diameter of G, denoted by diam(G), is the greatest distance between twao vertices in G, i.e.

diam(G) = . ?;‘y((c) d(u, v).

Consider the set of all regular graphs of degree r and girth g, and a graph from this set of minimal order is called an (r, g)-
cage.Ifg = 2d 41, an (r, g)-cage with no(r. g) verticesis called an (r, d)-Moore graph, where ng(r. g) = 1+r+r(r— 1) +
coe b r(r = NETI22]

For a set X C E(G), the contraction G/X is the graph obtained from G by contracting the edges of X and deleting all
resulting loops. When H is a connected subgraph of G, we use G/H for G/E(H), and let vy be the new vertex obtained by
contracting H in G/H. The vertex vy is called the contraction image of H in G/H.

In this paper, we first study unavoidable subgraphs of non-reduced graphs of diameter two. In Section 4, we characterize
graphs of diameter two in terms of collapsible graphs. In Section 5, we introduce a ¢oncept, L-collapsible, to study the



Fig. 1.

reduction of line graphs. Then we will investigate the relationship between the line graph of reduction of a graph and
the reduction of the line graph. We will discuss some applications in the last section. In the following, we discuss Catlin’s
reduction method first.

2. Catlin’s reduction method

In [3], Catlin defines the collapsible graphs. A graph G is collapsible if for every even subset R C V(G), G has a subgraph
I" such that G — E(I™) is connected and the set of odd-degree vertices of I is R. Let R be the set of all odd degree vertices of
G.If G is collapsible, then G — E{I") is a connected Eulerian subgraph of G. Thus, a collapsible graph is a connected and has
a spanning Eulerian subgraph. The graph K is regarded as both collapsible and having spanning Eulerian subgraph. In [3],
Catlin proved:

Collapsible Partition Theorem {Catlin, [3]). Every graph G has a unique collection of vertex disjoint maximal collapsible
subgraphs Hy, Ha. . ... He such that V{G) = V(H) UV(H) U - - - UV{H,).

Thus, every vertex of a graph Gis in a unique maximal collapsible subgraph of G. Contracting the subgraphs H, Hs, . . ., H;
to distinct vertices, we obtain a new graph from G, denoted by G'. This new graph is called the reduction of G. Let H be a
maximal collapsible subgraph of G and let v € V(G') be the vertex chtained by contracting H. Then H is called the preimage
of v and v is called the image of H in G If |[V(H)| = 1, then v is a trivial vertex in G’ and H is called a trivial collapsible
subgraph of G. A graph is called reduced if it contains no non-trivial collapsible subgraphs. It is easy to see that cycles (5 and
C; are collapsible, and any C; with t = 4 is a reduced graph.

Theorem A {Catlin [3]}. Let G be a graph, and let H be a collapsible subgraph of G. Then each of the following holds:

{a) G has a spanning Eulerian subgraph if and only if G/H has a spanning Eulerian subgraph.
{(b) Gis collapsible if and only if G/H is collapsible. In particular, G is collapsible if and only if G’ = K.
{c} If Gisareduced graph, then 5(G) = 3 and G is simple and K3-free.

In [4], Catlin introduced a reduction method to handle reduced 4-cycles. Let G be a graph containing a 4-cycle xyzwx,
and define E = {xy. yz, zw, wx}. Let G/m be the graph obtained from G \ E by identifying x and z to form a vertex vy, by
identifying w and y to form a vertex v,, and by adding a new edge v v,. The following theorem shows the usefulness of this
technique.

Theorem B (Catlin [4]). Let G be a graph and let G/m be a graph defined above. Then each of the following holds:

{a) If G/m is collapsible then G is collapsible.
(b) If G/m has a spanning Eulerian subgraph, then G has a spanning Eulerian subgraph.

Examples. The following K3-free graphs are all collapsible.

(i} Wi = K55 — e, where e is an edge in K5 5.
{ii} G, a graph obtained from W, by subdividing an edge of W, that is incident with two vertices of degree three in W, {see
Fig. 1).
(iii} G, and G, are defined above in Fig. 1.

One can easily show that graphs in Fig. 1 are all collapsible. Fig. 2 illustrates the application of Theorem B(a} and
Theorem A(b} to graph G,. Since @ = G, H = K5, and ((G/x)/®)/H = Kj; are all collapsible, by Theorem A(b), G/m is
collapsible, and so by Theorem B{a), G = G, is collapsible.

Let & be a family of graphs. A graph G is called # -free if G contains none of the subgraphs in . In this paper, we define

Z = {Kg. K3.3 — e, Gy, Gy, G,:}

Let m, I be two positive integers. Let Hy = K; , and H; = K; | be two complete bipartite graphs. Let x, v be two non-
adjacent vertices of degree m in Hy, and let u, y be two non-adjacent vertices of degree [in H,. Let S, ; denote the graph
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Fig. 3.

obtained from H; and H, by identifying v and u, and by connecting x and y with a new edge xy (see Fig. 3). Obviously,
S1.1 = G, the 5-cycle. It is easy to check that the following graphs have no non-trivial collapsible subgraphs, where ¢ = 2
and P is the Petersen graph.

We should use .£ to denote the set of graphs defined in Fig. 3, i.e.,

£ = 1K . Ky S PL

Lai in [10] showed that if G is a reduced graph of diameter two then G € £.

3. Z-free graphs

Here is our main result in this section.

Theorem 1. Let G be a graph of diameter two. If G is a Z-free graph, then either G € £, or G is the Hoffman and Singleton graph
{see [9]) or Gisa (57, 2)-Moore graph (if it exisis).

We shall use the following theorems.
Theorem C (Singleton [11]). Every graph with diamefer d and girth 2d + 1 is regular.

Theorem D (Hoffman and Singleton [9]). Suppose there is an r-regular graph G of order n = r? 4+ 1 and diameter 2 {and so
girth5). Thenr = 2,3, 7 or 57.

Remark. It is known that for r = 2. 3, and 7, there are unique (r, 2)-Moeore graphs (r-regular graphs ef order r? + 1 and
diameter 2). In particular, for r = 2 it is a pentagon Cs and for r = 3 it is the Petersen graph. The graph with r = 7, called
the Hoffman and Singleton graph, was constructed and proved unique by Hoffman and Singleton (1960} [9] (also see [2],
page 189}). However, it is not known whether there is a (57, 2 }-Moore graph.

The following simple results will be needed.

Lemma 1. Let G be a K3-free graph and diam{(G) = 2 and 3(G) = r.

(a} If 5(Gy=r = 1, then G Z Ky forsomet = 2.
(b} If G has girth 5, then G is an r-regular graph and |V(G)| =% 4 1.

Proof. {a})is obvious. For (b}, since G has diameter two, by Theorem C, and 5(G} = r, Gis an r-regular graph. Let v be a vertex
in G, then d(v) = r. Define

S = {u € V{(G) | diu. v) = i).
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Since G is r-regular and has girth 5, and diam{G) = 2, we have
|S:| =r. |So| =r(r— 1), and |5 =0 fori=3.
Therefore, |[V(GY| = 1+r +r(r— 1) =r? + 1. Lemma 1is proved. U

Lemma 2. If G is a simple and K5-free graph with diam(G) = 2, then every path L with length 3 in G lies in a 4-cycle or a 5-cycle.

Proof. Letl = xuwy be apath oflength 3. Since diam{(G) = 2, d{x, y) = 2.1fd(x, y) = 1, thenLliesin a4-cycle. If d{x, y} = 2,
then there is a (x, y)-path, say xwy, of length 2. Since G is Ks-free, neither w = unor w = v. Hence [ lies in a 5-cycle. LI

Lemma 3. Let H be a simple graph with diam{(H} = 2 and girth 5, and 8(H)} = 3. Let v be a vertex not in H. Let G be a graph
with V(G)y = V(H)YUvland E(H) C E(G). If v is adjacent with only two distinet vertices (of H), then either G has a K5 subgraph
or diam(G) = 3.

Proof. Assume G is Kz-free. let x and y be the two distinct vertices of H which are adjacent with ». Since G is Ks-
free, xy &€ E(H). Since diam(H) = 2, there is a vertex, say z, in V(H), such that xz,zy € E(H). Since H has girth 5,
(N A\ 1zH N (N \ {z}) = @. Let un be a vertex in N(x} \ {z}. Since I. = unxzy is path of length 3 and diam(H)} = 2, by
Lemma 2, . must be in a 5-cycle. Hence, there is a vertex, say wr,, in N(y) \ |z}, such that wqw, € E(H)and uny € E(H). Since
d(ur) = 3, thereis a vertex, say u, in N(w1) \ {x, un 1. Since G is K3-free, ux € E(G). Since H has girth 5, uy & E(H), otherwise,
uwwyyu is a 4-cycle in H, a contradiction. This shows that d;{(u, v} = 3, and so diam{G) = 3. The proof is complete. O

Lemma 4. Let G be a simple and K3-free graph with diam{(G) = 2 and girth 4. If G does not have a 4-cycle that contains a vertex
of degree 2, then G contains a subgraph isomorphic to a subgraph in Z.

Proof. Since G has girth 4, G has a 4-cycle C = x,x3%3x%4%,. Then by the assumption in the lemma, dix;} = 3 {1 < i < 4}. We
will divide the proof into three cases.
Case 1. There is another 4-cycle H with |E(H) N E(C)| = 2.

Without loss of generality, since G is K3-free we may assume that E{C) M E(H) = {x1x2. x3%3}, and let v be the other
vertex in H, i.e. H = x1x%x3vx1. Then G has a K3 3 subgraph, say &, formed by these two 4-cycles. Then dg (x1) = do(¥3) = 3
and dg (%)) = de{x4) = de(v) = 2. Since d(x) = 3, N(x2) \ {x1. X3} # @. Let x5 be a vertex in N(x2) \ {x7. x3}. Note that
L1 = X5%x:x4 and L, = X5%x; v are two paths with length 3 in G. By Lemma 2, [, and L; must be in a 4-cycle or a 5-cycle. If
Lyisin a 4-cycle, then x5x, € E(G). Therefore, GIE(H) U E(C) U {x5x2, X5x4}] = K3 3 — e. Similarly, if I, is in a 4-cycle, then
G contains K3 5 — e subgraph. We are done in this case if one of ; is in a 4-cycle.

Next we assume that both £;’s are not in a 4-cycle, and so they must be in 5-cycles. Let xsx:X 1 X4UX5 be a 5-cycle containing
Ly, and let x5x,%, vwxs be a 5-cycle containing [;. Therefore, G[E(C} U E(H) U {x5x5, uxs, x41t, X5w, wu}] = G,. We are done
in this case.

Case 2. There is another 4-cycle H with |[E(H)Y NE(C)| = 1.

Let E{C) NE(H) = {x1%}. Let v; and v, be the other two vertices in H such that H = vix1x;vpvq. Note that L = viupxaxs
is a path with length 3 in G. By Lemima 2, I. must be in a 4-cycle or a 5-cycle. If L is in a 4-cycle, this is the same as Case 1.
S0 we may assume that L is in a 5-cycle. Then there is a vertex, say w such that viw € E(G) and wx; € E(G). Therefore,
GIE(CY UE(H) U {vyw, wxs}] = Gg. This shows that the statement holds.

Case 3. There is no 4-cycle in G which shares an edge of C.

By the assumption, no 4-cycle shares an edge with C = x,x,x3%,4%,. Since d(x3) = 3, thereis a vertex u; € Ni{x3) \ {x2. x4}
Consider the path L, = x1x;%;31;. By Lemma 2 this path lies in a 5-cycle, say H; = x,x%;%3u 1%, Similarly, as d(x4) = 3,
there is a vertex w; € N(x4) — {¥1.x3} and the path [; = x;x3x,w; lies in a 5-cycle, say Hy = XXsxqwqwsXy. Since
L = upxyxu is a path of length 3, by Lemma 2 again [ must be in a 4-cycle or a 5-cycle. Since x,x; in C cannot he an
edge of another 4-cycle, L must be in a 5-cycle. Let v be a vertex such that vu,x;x; ws v be a 5-cycle containing L Therefore,
GIE(C) U Ixqua, taitty, UiXa, Xaw1, wwa, WiXa, via, wav}] = G.. Case 3 is proved. The proof of Lemima 4 is complete. O

Proof of Theorem 1. If 3(G) = 1then by Lemma 1, G = K ; for some t = 2. We are done in this case. In the following we
assume that § (G) = 2. By way of contradiction, let G be a counterexample with smallest order. Since G is Z-free, G is K3-free.
Since G has diameter two, G has girth either 4 or 5.

Case 1. G contains 4-cycles.

If none of the 4-cycles in G contains a vertex of degree 2, then by Lemma 4, G has a suhgraph isomorphic to a member in
#, a contradiction. Therefore, we may assume that G has a 4-cycle in which one of the vertex, say v, has degree 2 in G. Let
H = G — v. Then since G is Z-free, H is Z-free and also diam(H) = diam(G) = 2. Since |V(H)| = |[V(G)| — 1,and Gis a
smallest counterexample, the theorem holds for H = G — v.

IfG— v =K, thensince 5(G) = 2,t =2 and Gis a 4-cycle K; ;.

IfG — v = K, then since G is Z-free and has diam{G) = 2, G = K; (41.

IfG— v =S5, thenG = S, 1;0rG= 5,41, since diam(G)} = 2 and G is Z-free.

If G — v = P, the Petersen graph, or G — v = the Hoffman and Singleton graph, or a {57, 2}-Moore graph {if it exists},
then since (G — v) = 3 and G — v has girth 5, by Lemma 3, either G has a K5 subgraph or diam(G) = 3, a contradiction.

Since in any case, a contradiction arises. This shows that Case 1 is impossible and G contains no 4-cycles.
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Case 2. The girth G is 5.

Since diam(G) = 2, by Lemma 1 G is an r-regular graph with order r* + 1. By Theorem D, r = 2, 3, 7, or 57. It follows
from the remark after Theorem D, we know that G can not be a counterexample to Theorem 1 in this case. Theorem 1 is
proved. O

Corollary 1 (H.-J. Lai [10]). Let G be a reduced graph with diameter two. Then G € £ = {K\ ;. K3 ¢, Sm1. P}

Proof. Since G is a reduced graph, G is Z-free. By Theorem A, 5(G) < 3 and so G is neither the Hoffman and Singleton graph
nor a (52, 2)-Moore graph. By Theorem 1,G € £. U

4. Collapsible graphs with diameter two

Let G be a graph. Let H be a subgraph of G. Let A(G, H) be the set of vertices in H which are adjacent to some vertex not
in V(H), i.e.,

AG.H) = {v € V(H) | N(v) \V(H) # 2}
The set of edges in E{(G) \ E(H) incident with a vertex in A(G, H) is denoted by
E(G . H) ={uv €« E(GY\ E(H) | u € (V(GY\ V(H)) and v € A(G. H}}.
Let vy be the vertex in G/H obtained by contracting H in G. Obviously,

den{vn) = [E(G. H)| = |A(G. H)|. (1)

Proposition 1. Suppose G is a graph with diameter 2. Let H be o maximal collapsible subgraph of G. Let x,y € V(G) \ V(H).
Suppose xu, yu € E(G, H) forsome u, v € V(H), thenx # y and xy & E(G).

Proof. Suppose not, let Hy = G[V(H) U {x, y}]. Then H;/H = K; or H;/H = C,. In either case, by Theorem A{b), H, is
collapsible. It is a contradiction. O

Lemma 5. Let G be a graph with diameter two. Let H be a maximal collapsible subgraph of G. Then for each vertex v in A(G, H),
Ny(v) ={ueV(H)|uv e E(H)} =V(H)\ {v].

Proof. Letx € V{H) \ {v}]. Letz be avertex in V(G) \ V(H) adjacent with v, Since d(x, z) < 2,x € V(H), eitherzx € E(G) or
there is a vertex y in G such that zy, yx € E{G). By Proposition 1, only the last case holds with y = v. Thus, x € Ny(v} and
hence Ng(v) = V{H)y\ {v}. U

Lemma 6. Let G be a non-collapsible graph with diameter fwo. Let H be @ maximal collapsible subgraph of G. If G/H % K, ; for
somet = 1, then

|ECG. H)| = |A(G, H)| = |[V(H)|.

Proof. By (1}, we only need to show that |A{G, H)| = |V(H)|. By way of contradiction, suppose that |A(G, H)}| < |V(H)}|.
Then there is a vertex {say x) in V(H) \ A(G, H). Since G is not collapsible, |V(G/H)| > 1. Since G/H % K; ;, by Proposition 1
there is a vertex y in V(G) \ V{H) such that y is not adjacent to any vertex in A(G, H). Therefore, d(x. y} = 3, a contradiction.
This shows that |[A(G, H)| = |V(H)|. The lemma is proved. L

Lemma 7. Let G he a simple non-collapsible graph with diameter two and 8(G) = 2. If H is a maximal non-trivial collapsible
subgraph in G, then H is complete.

Proof. Since 3(G) = 2, G/H % K ;. Since G is simple, by Lemmas 5 and 6, H is complete. O

Lemma 8. Let G be a non-collapsible graph with diameter two. Then G has at most one non-trivial maximal collapsible subgraph.

Proof. Suppose that G contains two vertex disjointed non-trivial maximal collapsible subgraphs H and K. Then both H and
K have order at least two. Since G is connected, there exists a path joining a vertex of H to a vertex of K. Since diam{G) = 2
and [V{(H)}| = 2 and |V{K)| = 2, there are at least two such paths having length at most two. Choose any two such paths, say
Py and P,. If either both have length one or exactly one has length two, then H UK U Py U P, is collapsible, a contradiction.
Thus, we may assume that no path between H and K has length less than 2, and so P, and P, have both length two. In all
cases, the assumption on the diameter implies that there is an edge {f} joining the middle vertices of P, and P. The graph
G, =HUKUP; UP, U |f}is collapsible. Indeed, G /H/K = K4 — e. This contradicts the assumption that H and K are two
maximal collapsible subgraphs. Lemma 8 is proved. O
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Lemma9. Let G be a graph of diam(G) = 2. If §(G) = 1, then either G = K for some integer t or G contains a maximal
collapsible subgraph H having the following properties:

{a} Fach edge in H is in a K5 subgraph,

(b} G/H =K, forsomet = 1, and

(€} vy, the contraction image of H in K ¢, has degree t in K ;.

(d} If t = 2, A(G. H) has only one vertex, say v, and all the edges in E(G) \ E(H) are incident with v in G.

Proof. Suppose that G 2 K ;. Since §(G) = 1, by Lemma 1(a} G contains a K3 subgraph. Let H be a maximal collapsible
subgraph in G. Since 5(G) = 1, Gis not collapsible and so G # H. Since diam(G) = 2, by Lemima 8 H is the only non-trivial
collapsible subgraph of G. Let G; = G/H. If diam(Gy) = 1, then G; = K 3, and so Lemma 9 holds in this case. Because,
by Lemma 6, if G; # K, then A(G. H) = V{H) is a clique. If diam(G;) = 2, since G has no other non-trivial collapsible
subgraphs, and 3(G,) = §(G) = 1, by Lemma 1(a}, G; = K, for some t = 2. Let vy be the vertex in G; = K ; obtained by
contracting H. If d(vy) = 1in Gy, then since t = 2 and |V(H}| = 1, G will have diameter greater than two, a contradiction.
Therefore, d(vy) = tin Gy = K ;. Suppose that there are two vertices, say x and y, in V{(G,) which are adjacent with two
distinct vertices in V{H), then dg{x. y) = 3, a contradiction. This shows that in each case A{G. H)} can have only one vertex,
say v, and all the edges in E(G) \ E{H) must be incident with v. By Lemma 5, we know that Ny(v) = V(H)\ {v}. This implies
that each edge of H must be in a K5 since collapsible graphs are 2-edge-connected. The proof is complete. 0O

Theorem 2. Let G be a simple graph with diameter two. Then exactly one of the following holds:

{a} G is collapsible;

(b} G has a maximal collapsible subgraph H in which every edge of H is in a K5 subgraph and such that G/H = Ky ; for some
t = 1, and dgp(vy) = AWK Y = £, and G has a vertex v such that N(v) = V(G) \ {v];

(¢} G has a complete subgraph H such that G/H = K and t = |V(H)|, and dg/x(vy) = AUG ) = €, and each vertex inH is
incident with an edge that is incident with vy in G/H;

(d} G= Sm.ff

(e} G = P, the Petersen graph.

Proof. By Theorem 1, we know that if G is Z-free, then either G € £, or G is the Hoffman and Singleton graph or G is
{57,2)-Moore graph (if it exists).

If G is the Hoffman and Singleton graph or a graph with girth 5 and §(G) = 57 (if it exists), then by Theorem A{c}, G is
not reduced. Therefore, G has a maximal collapsible subgraph H. Since in this case G is K3-free, H is not complete, then by
Lemma 7, G is collapsible.

If G € £, we are done by choosing H = K.

Next we only need to consider the case that G is not Z-free, and so G has a non-trivial maximal collapsible subgraph H
with

[V{H)| = 3. (2}

If G is collapsible then this is case {a), and so we may assume that G is not collapsible.

If 5(G) = 1, then by Lemma 9, Theorem 2{h) is proved.

If §{G) = 2, since G is not collapsible, by Lemma 8 H is the unique non-trivial collapsible and by Lemma 7 H is a complete
graph, and diam{(G/H)} = 2. let G; = G/H. Then G, is reduced. Therefore, G, is a Z-free graph. Since diam{G;) = 2 and
8(G) = 2, we have 8(G1} = 2. Then G, is isomorphic to one of the graphs K> ¢, Si and P, where ¢ = 2. By Lemima 6 and {2),
[E(G, H}| = |V(H)| = 3, and so by (1}dg, (vy) = 3.

If G, = K, for some t > 2, then since d¢, (vy) = 3,

A(Kz;) = dG'l {(vg) = = 3.

By {1} and Lemma G, we have t = dg, (vg) = |E(G, H}| = |V(H)|. Since G has diameter two, it is easy to check that each
vertex in H is incident with an edge that is incident with vy in G/H. Theorem 2(c} holds.

To complete the proof, we only need to show thatif |V(H)| = 3, it is impossible to have G; = G/H = 54, or P

If Gy = 55, since dg (vy) = 3, vy € {x. v, z}. Using the fact that [E(G. H)| = |A(G. H)| = |[V(H)| = 3 (Lemma 6), and
the structure of 5, ), it is easy to check that G has diameter at least three, a contradiction. This case is impossible.

If G, = P, the Petersen graph, then dg, (vy) = 3, and so |E(G, H}| = 3. By Lemma 6, and (2}, H = K. It is easy to check
that graph G has diameter 3, a contradiction. O

Theorem 3. Let G be a K5-free simple graph with diameter two. Then either G € £ = {Ky ¢, Kz ;. Sm1. P} or Gis collapsible.

Proof. It follows from Theorem 2. U
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5. Reductions on line graphs and diameters

In this section, we extend Catlin’s reduction method to study the reductions of line graphs. For any graphs G and H, we
denote H < Gif H = G/X for some X C E(G) and denote D;{(G) to be the set of vertices of degree i in G with i = 1 and
DI{(G) = |J DiG).

=3

Lemma 10. Let H = G. Then each of the following holds,

(i} diam{H) = diam(G);
(i} if H is reduced, then H = G, where G is the reduction of G.

Proof. Lemma 10(i} follows from the definition of diameter. Next we will prove Lemma 10(ii). By the definition of H = G,
H = G/X for some X C E{G). Let G; = G[X] denote the edge-induced subgraph of G with edge set X.
Claim. If H = G/X is reduced, then Gy contains all non-trivial collapsible subgraphs of G.

Let Hy be a collapsible subgraph of G with M = E(Hp). If M ¢ X, then M \ X # @. Since collapsible graphs are closed
under contraction, Hp /(M M X} is a non-trivial collapsible of H = G/X, contrary to the assumption that H is reduced. The
claim is proved.

By the claim and the assumption that H = G/X is reduced, we may assume that X = X, U X5, where X; is the union of
the edge sets of the maximal non-trivial collapsible subgraphs of G and X; = X \ Xp. Then H = G/X = (G/Xg) /X, = G /X,
and so H = G". Lemma 10(ii} is proved. O

For a graph G, letj be a subgraph of G. [ is called a I-collapsible if L{J} is a maximal collapsible subgraph in L(G). For a
graph J, define

8:(J)) = {uv € E(J) | eitherdi(u} = lordy(v) =1} and J~ =G[V{)\ D).

Therefore,
VILYN =EJ) =E(T) V&) (3}
By Catlin's Collapsible Partition Theorem (Section 2), L{G), the line graph of G, has a unique collection of vertex disjoint
maximal collapsible subgraphs, denoted hy € £{L(G)) = {L1. L5, ..., L.} such that V{L(G)) = V(L) UV ({I) U U V(L)
Therefore, since L{G) is the line graph of G, G has a unique collection of vertex disjoint L-collapsible subgraphs, denoted by
G = Jeysuchthat L = L1 =i < o) and E(J;) NE(;) = B (i # j). We call J; the preimage of L; in G and
denoted j; = L=1(L;). Therefore, for a graph G, the following collections corresponding to the collection ¢7(G) are unique:

EE(G) = {&:1(1). E1f2). . ... S
where j; € €4(G) and soj;~ Ny = Wand €:(J;} N & () =P fori #j
By contracting subgraphs . /... .. Jo in G to distinct vertices, we obtain a new graph from G, denoted by G. Let
X =E(7YUE(J YU .- UE({7). Then

C=G/X =0 UG/ iy 1YY

For a subgraph j= € Z(G), let v; be the vertex in G obtained by contracting /~. Let €;(J) be the edge subset in £E(G)
corresponding to /. Then &{J} is a vertex subset in the line graph L{G). Since each edge in &, (J) is incident with a vertex in
V(7). eachedge in & (J) is incident with v; after contracting ]~ in G. Thus, the vertex subset &, (j) in the line graph induces

a connected subgraph in L(G).

Foreach &(J;) € €€(G), letY; be the subgraph in L(f}) induced by &,(J;),i.e. Y, = L(E?)[Sl (J)]. Therefore, |Y7. ¥y, ..., Y.}
is a collection of vertex disjoint connected subgraphs in L(&). Contracting ¥, Y. . . ., Y. into distinct vertices, we obtained
a new graph from L(&), denoted by L(é)*. Figs. 4 and 5 illustrate the relationship among G, L(G), L(é), L(é)’ and L(é)*.

From Fig. 4, we can see that L{G) = K, ; and

Gy ={J1 . )5 . J5 . Ji } = {GIx]. GIy]. G[es. eg. es]. Gleyz. er3. ensl}:
EE(G) = {&1(1). €1(J2). &1(J3). &1(Ja)} = {Her. ez, ezl {ea. €5, eph. {esh {e11. €15, €161

Theorem 4. Let I” be a maximal non-trivial collapsible subgraph of~L(G) andlet f =L~ YWY Let J~ = G[V() \ Di(f)] and let
Y = LG/ H)E(N]. Then L(G)/ " = L{(G/]7)/Y and s0 L(G) = L{G)*.
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v; is obtained by contraciing J;” =3, 4
o 4 ey = LIGH = LiGy
i
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Fig. 5.

Maximal Collapsible Subgraphs in L)

CLUEAGYy == {1y, La. I, L4}, wheve

Lo == (G i v, 10, Ulas 915 Tra, -

i B oblaloed by contractiog Y, 1 <244

Proof. Let v be the vertex obtained by contracting /™ in L(G). Let v, be the vertex obtained by contacting¥ in £{G/J }. Since
I =L(H V() = E().By(3),V{I') = E(J7)y U & (). By the definition of a line graph and the definition of contractions

above, we have
VLG Ty = (E(G)\ V() Udvr}
and

VL(G/[T)YY = EGNEG D Uiyl &
= (E(G\EJTIUENOD Uln)
= (E(G)\ VI U}
Thus, by (4} and (5), the mapping @ : V{L(G)/ ") — V(L{(G/]7)/Y) defined by

o) — {e ife # v,

v ife=uwr
is a bijection. This shows that

LG)/T = LG/ /Y.

By the procedures we defined L(G)’ and L(G)*, and repeatedly applying (6}, we have L{(G) = L(G)*. Theorem 4 is proved.

{4)

{5

(6)
O


lridenou
Typewritten Text
8


Proposition 2. If G # Ky is a collapsible graph, then L(G) is collapsible.

Proof. Let £{G)’ be the reduction of L{G). Suppose that L(G) is not collapsible. Then by Theorem A{c}, §{L(G)") = 3 and so
there is a vertex of degree at most 3 in L(G)'. Therefore, L(G) has an edge cut £ of size |E| = 8(L(G)'} = 3 and no edge in £
lies in a 3-cycle of L{G). By the definition of the line graph of graph G, an edge in L.{G) that is not in a 3-cycle is obtained from
two edges in G that are incident with a common vertex of degree 2. Since £ is an edge cut in L(G), those degree 2 verticesin G
corresponding to the edges in E forms a vertex cut in G. Thus, G has a vertex cut U with |U| = |E| = §(L{G)"} = 3 and every
vertex in U has degree 2 in G. If |U| is even, let § = U. If |U| isodd, let § = U U {v} where v is a vertex in V{G) — U. Then §
is an even subset of ¥V{G). However, it is impossible for graph G to have a subgraph I" such that G — E{I"} is connected and
the set of odd-degree vertices of I is 5. This is contrary to that Gis collapsible. Thus, L(G) is collapsible. O

Theorem 5. L(G) = L(G)" < L(G).

Proof. LetH < G be a maximal collapsible subgraph with E(H;) # @. Then by Proposition 2, L(H} is a collapsible subgraph
in L(G). Thus, there is a maximal collapsible subgraph I" in L(G) containing L(H) as a subgraph. Let ] = [~'(I"). Then J
is a L-collapsible subgraph in G such that H < J. Since collapsible graphs are 2-edge-connected, H is 2-edge-connected.
Hence, H € J . Let Y = L(G/])}&:{(J}]. Therefore, by Theorem 4, L{G}/I" = L(G/]7}/Y.let F = E{J7) — E(H). Let
X = L(G/H)[F U &(J)]. Therefore, L{(G/]7)/Y = L(G/H)/X. Thus, L(G/]7)}/Y = L(G/H).

_Since the maximal collapsible subgraphs of a graph are vertex disjoint, repeatedly applying the argument above, we have
L(GY* = I(G"). The proof is completed. O

By Theorem 5 and by Lemma 10, we have the following

Corollary 2. L(G) =< I{(G') and diam(L{G)") =< diam{L(G}").

In the following an (e,. ¢,)-path is a path whose first edge is ¢, and the last edge is e,. If an edge e < £(G) is incident with
avertexinuv ¢ D;r, then e is in a non-trivial complete subgraph of L{G). Therefore, e is a contractible vertex in L{G), and so
e & V(L(GY). A vertex e < L{G)' is called a trivial vertex if e is not a vertex obtained from a non-trivial collapsible subgraph
in L{G).

Theorem 6. diam{L{G}} < diam{(G) — 1, unless G = C,,.

Proof. Suppose that G is not a cycle. Let e, and €], be two vertices in L(G)'. It suffices to show that £(G)" has an (e,. e, }-path
with length at most m — 1 where m = diam(G).

Let Iy and I be the two preimages of e, and e; in L(G), respectively. Let H, = L~ '(I5) and Hy = L*I(I},). Then Hy and
H, are two L-collapsible subgraphs in G. Then E(H,) # @ and E(H,} # @.let ¢, = uv & E{H,} and e, = zw < E(H,). The

following simple fact will be needed.

Proposition 3. {f G hasan (e,. ey)}-path P, of length at most m, then L(P.) is a path of length at most m — 1 in L(G). Hence L{G)’
has an (e}, e, )-path with length at most m — 1.

Let Py be a shortest (v, w)-pathin G. We let P, be the {(ey. e,)-path formed by the path Py and {e,, e,}.

If [E(P1)| = m—2,then P; is an {ex. ey)-path of length at most m in G. By Proposition 3, we are done in this case. Therefore,
m—1=<|E(P)| = m.

Case 1. The ends of ey and ey are in D, (G) U Dy(G), e, tr, v, 2, w € D1(G) UD(G).
Subcase 1{A). |[E(P1)|=m— 1.

Then L{P.} is an (e,. e,} path with length at most m in L(G). If there is an internal vertex of P, which is in D;(G), then
at least two edges in P, that are incident with the vertex in D; {G) are in a non-trivial collapsible subgraph of L{G). Thus, at
least one edge in L(P;) will be contracted in L(G). Hence, L(G)" has an (ey. ey)-path of length at most m — 1. We are done in
this case. In the following we assume that

V{P) € D1(G) U Dy(G).

If at least one among e, or ¢, is in E(Py), then the path P, in G is an (e,. e,)-path with length at most m. Therefore, L(P;)
is an (e, ey)-path in L(G) with length at most m — 1. We are done in this case.

If e, and e, are not in £(Py}, then V{(P,} T D,(G). Let P, be a shortest (u, z)-pathin G. Since u, z ¢ V(Py), Py # P,. By the
same argument above, we havem — 1 < |E(Py)| = m.ThenC = E[P; UP;]is a cycle of length 2m or 2m + 1. Since Gis not a
cycle, there isa vertex a € V(P;) M D;(G). Suppose there is only one vertex in P, of degree at least 3. Let b he a vertex not in
C adjacent with a. Then there is a vertex in C having distance m + 1 from b, a contradiction. Thus, P, contains two vertices
of degree at least 3. So at least two edges in L{P,) will be contracted in L{G)'. Hence, L(G)" has an (e, e,)-path of length at
most m — 1. We are done in this case.

Subcase 1{B). |[E{P1)| = m.

If e, and e, are both in E(P,), then the path L(P.) in L{(G) is an (e, e, }-path with length at most m — 1. Then we are done

in this case. Next we consider the case that at least one of the edges in {ey. ey}, say &y, is not in E(P;}.
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Since Py is a shortest (v, w)-path withlengthminGande, ¢ E(P,},z € V(P)},and so P, = P, U{e,} isa (v, z)-path with
length m 4 1. Since m = diam(G), there is a shortest (v, z)-path P, with length at most m in G. If the length of P, is less than
m — 2, then P, with edge ¢, is a (v, w)-path with length at most m — 1, contrary to the fact that P, is a shortest (v, w)-path
with length m. Thus, m — 1 < |E(Py)| < m. Similar to the argument above, V(P) € Dy(G). Therefore, G € {Copy Coy1}, 2
contradiction. The proof of Case 1is complete.

Case 2. One of the vertices of {u, v. z, w} is in DI (G), (say u € DI (G)).

By using the fact that diam(G) = m, and any edge incident with a vertex in Dj (G) is in collapsible subgraph of L{G), one
can always construct an {e,. e, }-path P, such that after contraction, £L{P)" is an (e, e;)-path with length at most m — 1in
E{GY. The details of the proof is similar to Case 1, and hence is omitted. O

Corollary 3. diam(L(G)'} = diam(G") — 1 unless G’ = C,.

Proof. Apply Theorem 6 to G', we have diam(L(G')") = diam{G'} — 1 unless G’ = C,. By Corollary 2, we have diam(L(G)") =
diam(L(G')"). Therefore, diam(L{G)") < diam({L(G")) = diam(G') — 1unless G isacycle. O

For integer m > 0, define [™(G) = L(I™~'(G)) with LG} = G.

Corollary 4. diam(L"(G)'} = diam(G') — r unless L'(GY' is a cycle for some iwithQ < i < r.

Proof. When r = 1, by Corollary 3, the statement holds. Assume that G’ is not a cycle. Then we have the induction
assumption that

diam(L"~H(G)) < diam(G") — (r — 1). (7}
Let I = ["~1(G). If I" is a cycle, then we are dene. Otherwise, by (7)

diam(I"'"y < diam{G" — (r — 1).
Then by Corollary 3,

diam{L"(G)") = diam(L(")") < diam(I"") — 1 = diam(G’) — r.
The proof is completed. O

An (x, y)-path in I¥(GY is called non-trivia! path if x and y are non-trivial vertices in I*(GY and all the internal vertices
are trivial.

Proposition 4. Let k > 0 and e € E(I¥(G)). If the both ends of e are non-trivial, then each of the following holds:

(a} Thereisapath P = vpu, - - - Wy in Gsuch that d{vg., verq) = k + 1 and each internal vertex of P has degree 2 and vy and
U1 have degree at least 3 in G and 1¥(P) = e in [¥(G).
(b} diam(G) = k + 3.

(k) (k)

te—1) (k=1 (k—1)
Proof. {a} Lete = vy v, v

be an edge in L*(G)". Then there is a path P,_; = vy ‘v, k1

L{(Px_1) = e, and P,_, is also a path in [*~'(GY'. Since the both ends of e are non-trivial, vék’“ and v

k+1
two non-trivial collapsible subgraphs, respectively, and so vék_” and v,ﬁi}“ have degree at least 3 in L~ 1(G). Obviously,

ng—u has degree 2 in I¥~'(G). Otherwise, e will be in a non-trivial collapsible subgraph of I*(G}, a contradiction. Following

the same argument, we know that for each 0 < i < k, there is a path P,_; = »{ v .. ¢~V ”15,:1” in I*{(GY' such that
(k—i)
0

each internal vertex has degree 2 and v and ufjr_l” have degree at least 3 in I¥~/(G). Proposition 4(a} is proved.

{b) By way of contradiction, suppose that for any two vertices u and v in G, d{(u, v) < k4 2. LetP = wguq - - - vpy 1 be a
path in G as stated in part {a}. Let N~ () = N{vo) \ {v1} and let N~ (vpq) = N{wpqq) \ i) Since vg and vy have degree
atleast 3in G, [N~ ()| = 2 and [N~ {vp1 ) = 2.

Letx be any vertex in N~ (up). Suppose d(x, ver1) < k4 1. Let Py be ashortest (x, vy )-path. Then voPyis a (v, vgyq)-path
with length at most k 4- 2. Then £¥(wP,) is a path with length at most 2 in L¥(G) with both ends are incident with non-trivial
collapsible subgraphs. Then e is an edge in a G, or K in I*(G), and so e will be contracted in IX(GY, a contradiction. Hence
d(x, vpp1) = k -+ 2. Similarly, d(w. y) = k 4 2 for any vertex y € N~ (uy1). Let Py, be a shortest (x, y)-path in G. Since
d(x, vkp1) = k + 2 and d(vg, y) = k + 2, the length of P, must be k 4+ 1 or k + 2. Note that since each internal vertex of
P is of degree 2, P,, and P are disjoint. Suppose all vertex of P, are of degree 2 in G. Since [N~ (w)| = 2, thereis a vertex
x1 € N {vg) \ {x}. Note that d(x:, vg.+1} = k + 2. Since all vertices of Py, and all internal vertices of P are of degree 2,
d(x1, ¥} = k + 3, a contradiction. Thus, Py, contains a vertex of degree 3inG.

Now we letx € N~ (vp) and y € N~ () such that d(x, y) is as small as possible.

in I*~'(G) such that

1 c .
! are incident with

Case 1. Suppose the length of Py, is k 4 1 and suppose that there is a vertex of Py, of degree 3 in G. Then Lk(UOnyUk_;,_]) isa
path of length at most 3 in I¥(G) and at least one edge is in a collapsible subgraph of I¥(G). Then e will be contracted
in I¥(GY, a contradiction.

10
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Case 2. Suppose the length of Py, is k4 2. Note that, in this case the distance between each vertex in N~ (vp) with each vertex
in N"(vgy1)is k + 2. If there are two vertices of Py, of degree 3 in G then by a similar argument of Case 1, we will
obtain a contradiction. Thus, Py, contains exactly one vertex of degree 3 in G.

Suppose k = 2. Then L"(UDnyvk+1) is a path of length at most 4 in I¥{G} and at least two edges are in same
collapsible subgraphs of I¥(G). Then e will be contracted in I*(GY, a contradiction. Suppose ¥ = 1. We have a
subgraph of G described in Fig. 6. Without loss of generality, we may assume dg(x) = 3 or dg(w) > 3 but not
hoth. Suppose d;{x}) = 3. Since the vertices w, z, y and v, are of degree 2 and dix;,y,) = 3, d{x;.y}) = 4, a
contradiction. Suppose dg(w) = 3. Since d(x;, ¥) = 3 and d{x;.y1) = 3, x;w € E(G). Then e will be contracted
in L{GY, a contradiction.

The proof of Proposition 4(b}is complete. O

6. Applications

A graph is an even graph if it has no odd degree vertices. For a graph G, a connected even subgraph H is called a dominating
Eulerian subgraph if every edge of G is incident with a vertex in H. A double cycle cover of a graph G is a collection of even
subgraphs Hy, Hs. ..., Hp of G, such that each edge of G occurs in exactly two of the H's. If m = 3, then we say G admits
a double cycle cover with three even subgraphs. For example, consider K, ; for f > 2. If t is odd, then we can choose three
even subgraphs H) = H; = K3 ;1 and Hy = K5 5. If t is even, then we can choose H; = Hy; = K3 ; and H; = K; 4. Thus,
i + admits a double cycle cover with three even subgraphs.

Theorem E. Let G be a connected simple graph with at [east three edges.

{a} (Catlin [5]). Let G be a graph and let H be a subgraph of G. If H is collapsible or H is a 4-cycle, then G admits a double cycle
cover with three even subgraphs if and only if G/H admits a double cycle cover with three even subgraphs.

(b} (Catlin [6]). If G has a spanning Eulerian subgraph, then G admits a double cycle cover with three even subgraphs.

{c) (Harary and Nash-Williams [8]). L(G) is Hamiltonian if and only if G has a dominating Eulerian subgraph.

(d} (Catlin [3]). G has a dominating Eulerian subgraph if and only if G', the reduction of G, has a dominating Eulerian subgraph
containing all non-trivial vertices of G

It is known that the Petersen graph cannot have a double cycle cover with three even subgraphs. By Theorem E(a}, one
cansee that S;; ; admits a double cycle cover with three even subgraphs. We alse know thatif G £ £, then G has a dominating
Eulerian subgraph. By Thecrem 2 and Theorem FE, we have the following corollary:

Corollary 5. et G be a connected graph with diameter at most 2.

{a} (Veldman [12]). If G has at least three edges, then L(G) is Hamiltonian.
(b} (H-J. Lai [10]). If Gis 2-edge-connected, then either G admits a double cycle cover with three even subgraphs, or G = P, the
Petersen graph.

The smallest m such that L™(G) is Hamiltonian is called the Hamiltonian index of G and denoted by h(G). The following
theorem generalize Corollary 5(a}, and improves a result in [7] stating that i(G) =< diam{(G) unless Gis a path or a G,.

Theorem 11. Let G be connected simple graph. Then h(G) = diam(G) — 1 unless Gis a path.

Proof. If diam{G) = 2, then by Corollary 5{a) the theorem holds. In the following we assume that G is not Hamiltonian and
diam{G) = 3. Let r be the largest non-negative integer such that diam(L"(G)") > 3 and L"(G) is not Hamiltonian. Then either
diam(L'T1(G)") = 2 or L't1(G) is Hamiltonian. { Note that if no such integer r exists, this implies that diam(Z(G)") = 2. Our
proof is still valid for this case.} By Corollary 4,

r < diam{(G) — diam(I"(G)" < diam(G) — 3. (8)

If I'*(G) is Hamiltonian, then we are done. If diam(f"7'(G)} = 0, then I'Y1(G) is collapsible. By Theorem A(a) and
Theorem E(c), L'1%(G) is Hamiltonian. By (8) l(G) < r + 2 < diam{(G) — 1. We are done in this case. In the following
we will consider the case that 1 < diam{I"T{(G)) < 2.

11
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Note thatsince 1 < diam(L"(G)") < 2, L7TNGY € {K2. K1, Ko 5. Spts PYLIFL™1(G) has a dominating Fulerian subgraph
containing all non-trivial vertices of L'+ (G)’, then by Theerem E(d} L’ *(G) has a dominating Eulerian subgraph. Therefore,
by Theorem E(c) L"7?(G} is Hamiltonian. By (8), h(G) < r +2 = diam(G) — 1.

Next we assume that It (G) has no dominating Eulerian subgraph containing all non-trivial vertices of L'+ 1(GY'. For
each possible case of L'T1(GY € 1K, Ky 1. Ko 5. S P), IPH{G)Y has at least an edge e = xy such that x and y are non-trivial
inI"*'(G)’. Then by Proposition 4 with k = r 4+ 1 in this case,

diam(G) = k+3 =r + 4. (9}

Since each vertex of degree atleast 3in L't (G)' € {Ky. K1 ¢. Ko <. Sy P1is a non-trivial vertex, and the fact that L7 1(G) has
at least two non-trivial vertices, ane can check that I72(G) is collapsible. Therefore, by Theorem E(c), L7 3 (G) is Hamiltonian.
Hence, by (9), h{G) = r + 3 =< diam(G) — 1. The proof is complete. O
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