LEE SALLOWS
Nijmegen, The Netherlands

"You never learn anything, you only get used to it". —Laurent Siklóssy

Sextvigesimal Notation

The method of representing numbers by means of place-value notations that differ in their radix or base, such as binary (base 2), octal (base 8), decimal (base 10), and so on, is nowadays widely familiar. We remind ourselves that the numeral "123" interpreted in base b means $1 \cdot b^2 + 2 \cdot b^1 + 3 \cdot b^0$, the case $b=10$ then yielding $1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 = 100 + 20 + 3 = 123$, or one hundred twenty-three in our conventional decimal notation. In each case the total number of distinct symbols or digits called for is simply the same as the base indicated: two symbols for binary, eight for octal, etc. Standard practice is to use the required number of decimal digits (0-9) for all bases up to ten and to supplement these with letters of the alphabet for higher bases. Thus, in addition to 0-9, hexadecimal (base 16) employs A for 10, B for 11, etc., up to F for 16, to complete its sixteen digits, a hexadecimal numeral such as AB9F then indicating $10 \cdot 16^3 + 11 \cdot 16^2 + 9 \cdot 16^1 + 16 \cdot 16^0 (= 43936$ in decimal). This recurrent use of the familiar decimal digits is a convenience for us decimal-oriented users, yet inessential. Our choice of what symbols to use as digits in hexadecimal or in any other system is entirely free. Sixteen runes (ranked in an agreed order) would serve equally. Or the first sixteen letters of the alphabet, say. From the standpoint of logology however, to neglect the remaining ten letters would seem a job half done.

An obvious idea then is a number system using base 26, with its digits comprising A to Z in their natural order. This implies a notation in which every natural number is represented by a unique string of letters, while every string of letters could be interpreted as a unique natural number; an intriguing prospect offering scope for developments beyond reach of traditional gematria. However, there is a problem. For in that case, as first digit the letter A will represent zero, which is the place-holder or empty position indicator, a key element in any positional number system. The trouble is that this not only conflicts with the more natural A=1, B=2, etc., the behavior of zero is peculiar in that leading zeroes may be appended to or deleted from any numeral without affecting its value. Thus in decimal notation, 12, 012, 0012,… all stand for twelve. It seems arbitrary that A should be singled out to exhibit an aberrant property not shared by the other letters. Still more serious, the numerical value of string ABC will then be the same as that of BC, while AARON will equal RON (1), and so on. Our hope of a system in which every distinct letter string stands for a unique number is thus not realized in this scheme. Even reordering the digits—which is undesirable—merely shifts the problem to a new letter.
Having pondered this predicament on and off over a period of years, a solution recently occurred to me. It is a simple step, but one impossible to make as long as base 26 is the starting point—a central assumption difficult to shake off. The answer is to introduce an extra symbol for zero. I shall use "_", the (bold) underscore, which is a near approach to that typographical cousin of zero, the blank. With the addition of this extra character we arrive thus at a base 27 or septvigesimal (SV) system whose digits comprise the underscore and the upper case letters, so that _=0, A=1, B=2, ... Z=26. Henceforth, if the underscore is a leading character it may be dropped or ignored; elsewhere it must be retained. Note that use of the blank itself would have left any trailing zeroes invisible and thus undetectable, a fatal flaw. On the other hand, there is nothing to prevent us from interpreting underscores as blanks, and vice versa, should we so choose. The advantage of doing so will emerge.

The SV notation for numbers beyond 26 is then best illustrated through visualizing a suitable odometer, which is a perfect model of a positional number system, the Number made Flesh, as it were. Its simple mechanism is familiar to us in the tape counter or car mileometer: a row of rotatable discs viewed edge-on, each bearing the ten digits evenly inscribed around their periphery. In an odometer designed for SV, however, 0-9 are replaced by _Z, the discs then rotating in 27 rather than 10 steps. Each successive input or event to be counted advances the rightmost disc by one digit. With the completion of a cycle its left hand neighbor is advanced one digit also. And so on with the remaining discs. Each new input thus gives rise to a new combination of digits in the viewing aperture. Starting from the reset or zero position, which is a row of underscores, the SV notation for a given number \(n \) is then found on the readout after entering \(n \) successive inputs:

\[
 n: 0, 1, 2, ... 26, 27, 28, 29, ... 53,54,55,56, ... 728,729,730,731, ... \\
 SV: _, A, B, ... Z, A_, AA, AB, ... AZ,B_, BA,BB, ... ZZ, A_, A_, A_, A_, A_, ...
\]

The sequence speaks for itself. As the odometer advances, the readout progresses systematically through every possible combination of digits, all the 1-digit strings followed by all the 2-digit strings, etc., the first yielding a numeral for one, the second a numeral for two, and so on. Our goal is achieved: every distinct string of letters is now a unique code or label for a distinct positive integer, while leading zeroes may be added or deleted without affecting any letter; the behavior of A is no longer aberrant. At the same time, the codes for many integers include underscores, a fact which need cause no concern and will even prove useful in a moment. Furthermore, negative integers, fractions, real numbers, and so on, can all be represented by bringing in minus signs, "decimal points" (unit points, or separators as they are better called), and other signs, in the usual way. Aside from its offbeat radix and digit symbols SV is an entirely conventional number system.

To convert a letter string to its decimal equivalent is easy. Take CAT. Noting C=3, A=1, T=20, we write: \(\text{CAT} = 3 \times 27^2 + 1 \times 27^1 + 20 \times 27^0 = 2187+27+20 = 2234. \) The reverse process of deriving the SV notation for a given number calls for successive divisions by 27. Consider 74417. Then 74417 \div 27 = 2756 with remainder 5. E=5 is then the final digit of the SV numeral. The process is then repeated with the previous quotient: \(2756 + 27 = 102 \) with remainder 2. B=2, becomes the next to last digit. Then 102 \div 27 = 3 with remainder 21. U=21 precedes B. The end is reached when the quotient falls below 27, its value then standing for the leading digit: C=3 in our example. So, 74417 = CUBE. Test yourself: what is 1492 in SV? See Answers and Solutions.

The logoh extends it languages such, ever word, is a.

For instance PRIME, we find some properties (essentially, BEAST, punctuation to a unique finite seq., nothing short (texts) are)

Adding an underscore

If every underscore in the SV notation is preceded by a leading zero, that yield is

We need a contraction from SV into final which are

The above text from SV is represented as

We proceed checking multiplication tables shown. Next, L + E and can

ONLY + E and carry is the end.

The above text is checked in
The logological implications of SV now begin to unfold. For as the sequence above extends it will come to include every English word, along with all of the words of those languages using the Roman alphabet. Every word is an integer written in SV notation, and as such, every word is greater or lesser than any other given word, is an odd or an even word, is a composite or a prime word, is a perfect square or cube or whatever, and so on.

For instance, the smallest English word that is prime is AN, which is 41. Another is PRIME, which is 8864267. Henceforth it becomes natural to identify a word with the properties of the integer it represents. Likewise, a dictionary now reveals itself as a list of (essentially random) integers whose lexicographical ordering is different to what it would be were they ordered by magnitude. Moreover, the advantage of interpreting underscores as blanks now appears. For then the series of natural numbers must also include every finite sequence of words, such as WORD _ WAYS, THE _ NUMBER _ OF_ THE_ BEAST, and INTERPRET _ UNDERSCORES _ AS _ BLANKS. That is, neglecting punctuation and other non-alphabetic signs, every sentence, indeed every text corresponding a suit number made to a unique integer, also. The ramifications of all this in relation to logology become nothing short of momentous in the realization that from here on relations among words (texts) are expressible in mathematical equations.

Adding and Multiplying Words

If every word is a number then two words can be added together and their sum expressed in SV notation. Chances are the result is a meaningless string of letters. Might cases exist that yield a word? There are thousands.

We need a name for integers whose representation in SV is a word. I propose wint, a contraction of word-integer. Consider the addition of two wints, 399749 and 85817, which are THIN and DISK, respectively. Starting from zero and advancing our SV odometer 399749 steps the readout will be THIN. Advancing its thin discs a further 85817 progress steps must show a result that matches the decimal number 399749 + 85817 = 485566. It is followed a numeral another wint: XRAY. That is, 485566 = 399749 + 85817 or XRAY = THIN + DISK, a unique which are just equivalent statements in different notations. Starting with XRAY and reverting the odometer by 399749 backward steps thus produces XRAY - THIN, which is DISK, as we could have predicted from elementary arithmetic.

The above suggests two approaches to calculating with SV numerals. One is to convert from SV into decimal, perform computations as usual, and then translate the answer back into SV. The other is to work directly in SV itself, a method requiring addition and multiplication tables, as provided on the next page. Consider an example:

\[
\begin{align*}
\text{ONLY} + \text{REST} &= \text{AFTER} \\
\text{ONLY} &= 5 \\
\text{REST} &= 3 \\
\end{align*}
\]

We proceed exactly as with ordinary sums, beginning with the right-hand digits. The tables show Y + T = AR. Thus, write down the unit's R and carry the twenty-seven's A. Next, L + S = AD, to which must be added the carry: AD + A = AE. Write down the E and carry the A. Then N + E + A (the second carry) = T. Lastly, O + R = AF. ONLY + REST = AFTER you have mastered this example. The procedure for subtraction, multiplication, and (long) division is entirely analogous. The following sums can be checked in the same way:
Semantic cohesion lends charm to some of these examples. If you are anti-bulk then diet; to have a gift is okay; chat, talk, and wind are synonyms; Rudy and Judy doubtless know that the jays of sound sleep in comfortable beds is a matter of luck; SEND+MORE is not equal to MONEY, contrary to cryptarithmic superstition. But how were these specimens derived? Doing sums in SV would be a lot easier if only we knew our SV tables by heart. Yet even then calculating by hand would remain tedious and slow. Prohibitively slow. Using a computer for the job is not merely quicker, its ability to perform fast searches through a data base makes it a virtually indispensible tool for research in this field. The above examples, for instance, are among more than 7000 discovered by a simple program that, using a stored list of words, took each 4-letter pair in turn, calculated their sum and then checked to see if it was present in the list. This process need not be limited to 4-letter words of course, or just pairs, or addition only.

Either of the letters which of the language, is enough to handle large 2147483648 ENQUIRY directly in a glance at a

Question: Which answer depends directly on 4-letter results of 2-letter strings in words stored as 2-letter strings? Equivalent

<table>
<thead>
<tr>
<th>No. of Initials</th>
<th>Percent</th>
<th>No. of Final</th>
<th>Percent</th>
</tr>
</thead>
</table>

So whereas around one person of the the bottom line the struggle to try. Nonetheless combine with each much rarer incongruity struggles to

AMEND +
ATONE +
BYRON +
CRIES +
FIFTH +
HOVEL +

The focus instead of AFFECTION, than when glaring is this
Either of the two methods described above may be implemented in a program of this kind, which of them is best? Decimal operations are a built-in feature of every programming language, while routines for converting from SV to decimal and back again are simple enough to write, so this would seem easier and faster. So it is—provided your software can handle large enough integers. In Pascal, for instance, the largest integer allowed is 2,147,483,647, which is

ENQWLTJ, so the highest you could process would be ENQUIRY; a similar limit is met when using a pocket calculator. Routines for calculating directly in SV evade this problem but are more difficult to write and slower in execution.

Incidentally, programmers will find "_" preferable to "_" in representing zero, as a glance at an ASCII code chart will make clear.

Question: Given two wints and b, what is the likelihood that \((a + b)\) is a wint? The answer depends on its length, and hence on that of a and b. The sum of two n-digit numbers contains \(n\) or \(n + 1\) digits. Suppose we add two smallish 3-letter wints to produce a 3-letter result and ignore cases that contain underscores. The total number of possible 3-letter strings is 26^3 = 17,576. How many of these are words? A modest lexicon of 25,000 words stored on my hard disk reveals 747 items of 3 letters. The chance of a random 3-letter string forming a word is thus something like 747 in 17,576 or about 4.25 per cent. Equivalent figures for some other string lengths are as follows:

<table>
<thead>
<tr>
<th>No. of digits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of words</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>214</td>
<td>13.4%</td>
<td>4.25%</td>
<td>0.026%</td>
<td>0.001%</td>
<td>0.00005%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>0.46%</td>
<td>29.1</td>
<td>747</td>
<td>2,140</td>
<td>3,091</td>
<td>3,791</td>
<td>4,043</td>
</tr>
</tbody>
</table>

So whereas the chance of two smallish 3-letter wints adding to form another word is around one in twenty, for two smallish 7-letter words it is only about one in two million, despite there being over five times more 7-letter words than 3-letter words, as seen in the bottom line above. On the other hand, more 7-letter words mean more candidate pairs to try. Nonetheless, solution counts diminish rapidly beyond 4-letter words. Instances that combine words whose meanings make them in some sense apposite then become very much rarer. A random selection of 5 and 6-letter word sums follow. Sometimes the sheer incongruity of the word combinations produces quite a comical effect as the brain struggles to invent scenarios to "explain" the equations.

Example Equations:

- AMEND + BEING = CROAK
- ADAPT + DIODE = EMPTY
- ANGER + ANNA = MONG
- BEAST + ENGRAVE = BISON
- BEKA + CRAMP = BONK
- BEYOND + ENRAGE = BROW
- BICK + FREEZE = BIZZ
- BLOOM + BONE = BORM
- BOLT + CREEK = BOMK
- BOLD + DRIED = BORK
- BONKS + ENQUIRY = BORKY
- BORN + ENQUIRY = BORKY
- BOST + ENQUIRY = BORKY
- BOUT + ENQUIRY = BORKY
- BOWN + ENQUIRY = BORKY
- BOWN + ENQUIRY = BORKY
- BOWN + ENQUIRY = BORKY
After \((a+b)\), what about \((ab)\)? The product of two \(n\)-digit numbers contains \(2n\) or \(2n-1\) digits. This is \(n\) digits greater than in their sum. The likelihood of \((ab)\) forming a wint is thus drastically reduced, a fact reflected in the extreme rarity of instances. The problem of leading digits surviving in the result disappears with products so that word lengths are not important. Even so, a program that ran through my lexicon and tested every single pair \((a,b)\) formable from words using 6 or less letters discovered fewer than 100 cases for which \((ab)\) is a wint. A few of the better examples, by which I mean those using no single letter words, acronyms, proper names, etc., follow. The funereal tone in the right hand group (dizrench .. bury body .. rugged c ojfin .. cram corpses) is pure chance!

The equations looked at so far are of simplest type: \(y = a + b\) and \(y = ab\). Substitutions and transpalsals lead to more intricate forms; e.g., by combining \(B\times FRET = NOUNS\) with \(FRET = SLID\cdot LUCK\) and \(NOUNS = ANGER + MANIA\), we get \(B = (ANGER + MANIA)/(SLID\cdot LUCK)\). And so on to any degree of complexity. Any degree of complexity? Peering beyond these elementary expressions, at this point in our progress all kinds of possibilities begin to suggest themselves. To employ a metaphor, until now we have been examining the contours of an unfamiliar object recovered from the ground. There are suggestions it may contain explosive material. Now we have realized the thing is ticking. This brings us to the Big Bang.

The New Gematria

On my bookshelf is The Penguin Dictionary of Mathematics. I open it at random and select an entry at will. The item reads, "GCD. Abbreviation for greatest common divisor." Of course: the GCD of 12 and 18 is 6, for instance, because 6 is the highest number that divides both 12 and 18. GCDs for larger numbers can be found using a simple process called Euclid’s algorithm. But if every word is a number then every pair \((a,b)\) must have an GCD as well. Could some of these GCDs themselves be words? A program similar to the one described above but now incorporating Euclid’s algorithm pours out examples by the score: The GCD of JET and PIE is BAD, of BELCH and DRYLY is LAW, of FEEDS and EARLY is ADD, etc. The GCD of STEWS and PENNY is GCD. Verification of these instances is tedious but straightforward, easier if you convert to decimal first. Easier still performed on your PC.

Re-opening the Dictionary elsewhere I land by chance on Pythagoras Theorem. Let’s see, could a right-angled triangle have sides whose lengths are wints? That is, can three words be found to satisfy \(a^2 = b^2 + c^2\)? A program that took pairs of words, calculated the square root of the sum of their squares and then checked the result against a word list has identified a square on AMF. This triangle \((a:b:c)\) can any number of if lengths form a right-angled triangle just as \((BEG. In fact, I have found that if lengths looked at \((DEE + 0\text{ (DEE}) improve on the result. How about finding a right-angled word? The

It is time to recall the relation expression:

That’s right: \((a:b:c)\) is the result of \((0,0,0)\). Improve it, improve it, improve it. How many triangles can you find that work?

Ten sample wints that encourage you:

FOUR + ONE = ONE

Can it be that work?

(FOR + (E)IG: (N IN

It would be useful to single-level triangle difficulties:

What has happened? Not a single lights on the main diagonal. And the squares on the main diagone wint! Can you find a
This is a cheerful fact about the square on one hypotenuse: $a^2 + b^2 = c^2$. This is the only instance discovered; can any reader track down a second? But if lengths can be wints, so can areas. Take the square on the side of length AM in the triangle just mentioned; its area is $AM^2 = BEG$. In fact this is the only such square I have found, although the products we looked at earlier yield rectangles with the required property; e.g., if length \times breadth $= JIG \times JOB$, then area = DAE-MON square units. Turning instead to triangles in general, armed with Heron's formula, which expresses area in terms of 3 sides, I went fishing for wint-edged specimens whose area is also a wint, but met with no success. Not to be outdone, I tried a different figure. The six sides of the L-shape above are all wints, while its area is given by $(BOY \times EGG) + (DEE \times SAW) = (BOY \times PLY) + (DEE \times SAW) = CLOSET$. Can any reader improve on this, perhaps by finding a different shape that uses a more apt set of words?

It is time for another lucky dip in the Dictionary. I find: "Congruence modulo n. A relation expressing the fact that two integers differ by a multiple of a chosen number n." That's right: we write $a \mod n = b$, (spoken, "a modulo n is congruent to $b")$ when the result of dividing a by n leaves a remainder of b. Hence: 10 mod 4 == 2, and 9 mod 3 == 0, and ... well, you can see it coming: CIRCLE mod LOVE = FLAG, SATAN mod HATE = BOOK, OUTCRY mod HIS = FOXY, LEGATO mod THAT = SNOW. Ten samples taken at random from among xillions the computer finds. This abundance encourages specialization. Consider: $(FOUR \times SIX) \mod TEN = ART$, and $(ZERO + FOUR + EIGHT + TWELVE) \mod SIX = GOD$. Almost every wint is a number-word. Can it be done using number-words only? It can: $(ELEVEN \times NINETY SIX) \mod TEN = ONE$. But alas, $(11 \times 96) \mod 10 = 6 (+1)!$ What we really seek is an expression that works on both levels of interpretation. Three (non-trivial) instances are as follows:

$$((FORTYTWO + FORTYNINE) \mod SIX = ONE) \text{ and } (42+49) \mod 6 = 1,$$
$$((EIGHTYFIVE - EIGHTYTWO) \mod TWO = ONE) \text{ and } (85-82) \mod 2 = 1,$$
$$((NINETYNINE - TWELVE) \mod FIVE = TWO) \text{ and } (99-12) \mod 5 = 2.$$

It would be nice to find two-level equations rather than congruences. However, the difficulties involved are horrendous. To date I have not succeeded in finding even a single-level equation. Immortal fame awaits the first logologist to succeed.

What has the Dictionary in store for us next? I pick a new page at random and my glance alights on "Magic square. A square array of numbers whose sum in any row, column, or main diagonal is the same." The contingency this suggests is exciting: a magic array using wints! Can it really be done? A program for seeking squares formed from any set of
special numbers is not difficult to write. Contrary to intuition tighter internal constraints make it harder to find wins that will satisfy 3×3 squares than it is for larger types. The rhyming word triples that appear in solutions reflect these closer restrictions:

\[
\begin{array}{ccc}
HOG & BIG & HUG \\
FUG & FOG & FIG \\
DIG & JUG & DOG \\
\end{array}
\] =
\[
\begin{array}{ccc}
6244 & 1708 & 6406 \\
4948 & 4786 & 4624 \\
3166 & 7864 & 3328 \\
\end{array}
\]

The magic constants here are SRU = 14358 (left) and XECX = 476142 (right). The challenge this suggests is obvious: can a square can be found whose constant total is itself a win? Moving on to 4×4 squares the problem has yielded to attack:

\[
\begin{array}{cccc}
EWE & HOE & TOG & LOW \\
NUN & RIP & FIN & HAW \\
PIN & RAW & DUN & HIP \\
JOG & BOW & OWE & ROE \\
\end{array}
\]

magic constant = ATOM

\[
\begin{array}{cccc}
DOT & RAJ & TIT & PAX \\
PIT & TAX & FOR & PAL \\
TAR & RIP & MAP & FOX \\
RAP & BOX & RAT & TIN \\
\end{array}
\]

magic constant = BEAT

\[
\begin{array}{cccc}
FAR & FOB & OAT & BUS \\
GAY & JUG & FAT & FOG \\
HUN & MAR & ON & HAM \\
HOB & BE & HUE & MAT \\
\end{array}
\]

magic constant = ACME

\[
\begin{array}{cccc}
DIM & ONE & TUG & RAP \\
RIG & TAP & DOT & PAY \\
THE & TIP & NAP & DID \\
PAP & BUD & SPY & TOW \\
\end{array}
\]

magic constant = BEAN

Here the top squares have a (hidden) "graeco-latin" structure, which entails that the four words in each quadrant and the four corner words of each 3×3 subsquare also total to ATOM and BEAT. Evidently the potential of SV magic squares to combine both mathematical and logical properties provides enormous scope for future investigations. For the time being, however, I propose a specific challenge: can any reader discover a square with MAGIC as its constant total?

Meanwhile, turning again to the Dictionary my eye falls on: "Irrational number. A real number that cannot be written as an integer or as a quotient of two integers. " The classic example is the diagonal of a unit square: √2, or 1.4142135..., the dots indicating an endless string of digits. But can irrationals be expressed in SV? Of course they can, SV is Before leading off this section, an intriguing question arises: What has a SV expansion in which 1 divides 0? Namely, 1.4142135... above but 1.4142135... below. This is the only rational number that is a repeating decimal fractional part of 2.

What is the first English word to occur in the string is NUT, closely followed by SEW. As it happens this initial fragment contains no underscores. However, if √2 is a so-called "normal" number, as mathematicians believe, then its infinite (strictly, "chaotic") sequence will eventually include every possible pattern of n digits, for every n. An odd-seeming yet perfectly serious question is thus: What is the first
English *sentence* to occur in the septivigesimal expansion of \(\sqrt{2} \)? And the same can be asked of all similar numbers, including say, \(\pi \), \(e \), and Euler's constant, \(\gamma \). Who knows? Perhaps the first sentence to appear in \(\pi \) is \(\ldots \) GOD EXISTS \ldots \), while that in \(e \) might be \(\ldots \) PROVE IT \ldots \), and that in \(\gamma \) might be \(\ldots \) THIS NUMBER IS IRRATIONAL \ldots \), which would be fun since nobody yet knows whether this is true or not.

Another intriguing number is phi (\(\phi \)), the golden ratio, which equals \(\frac{1}{2}(1 + \sqrt{5}) \). Its SV expansion begins thus: A.PRNTPFCUCRKYGRVYLLCQNBIGOVQTRYLOTLYIKM \ldots (right). The in which BIG is the first word to occur. This is an interesting case to consider since the total is itself

Dictionary of Mathematics has now fallen open at: "Reciprocal. The number produced by dividing 1 by a given number." The reciprocal of \(C \) is thus 1/C or \(A/C \). Simple long division reveals the answer: C into A won't go, so write \(\ldots . \), append a zero to A and repeat: C = 3 into A_ = 27 goes \(\ldots \times \) exactly. Thus the reciprocal of \(C \) is \(\ldots A_ \), which is \(\frac{1}{27} = \frac{9}{27} = \frac{1}{3} \), in decimal. In fact the result of any long division is always a *recurring* quotient, although we tend to overlook this when the repetend is made up of zeroes only. The reciprocals of the alphabet illustrate this point:

\[
\begin{align*}
A/A &= A. \\
A/B &= \ldots \ldots. \\
A/C &= \ldots \ldots. \\
A/D &= \ldots \ldots. \\
A/E &= \ldots \ldots. \\
A/F &= \ldots \ldots. \\
A/G &= \ldots \ldots. \\
A/H &= \ldots \ldots. \\
A/I &= \ldots \ldots. \\
A/J &= \ldots \ldots. \\
A/K &= \ldots \ldots. \\
A/L &= \ldots \ldots. \\
A/M &= \ldots \ldots. \\
A/N &= \ldots \ldots. \\
A/O &= \ldots \ldots. \\
A/P &= \ldots \ldots. \\
A/Q &= \ldots \ldots. \\
A/R &= \ldots \ldots. \\
A/S &= \ldots \ldots. \\
A/T &= \ldots \ldots. \\
A/U &= \ldots \ldots. \\
A/V &= \ldots \ldots. \\
A/W &= \ldots \ldots. \\
A/X &= \ldots \ldots. \\
A/Y &= \ldots \ldots. \\
A/Z &= \ldots \ldots.
\end{align*}
\]

What has all this to do with \(\phi \)? Simply this: the reciprocal of \(\phi \) has a fascinating property, namely: \(1/\phi = 1-\phi \). That is, \(1/\phi = \ldots .PRNTPFCUCKDRYGRYLLCQNBIGOVQTRYL \ldots \), which is the same string as above but minus its leading \(A_ \)!. Some readers may like to test this by taking a small portion of \(\phi \), say A.PRNT, and dividing it into A by long division (using the multiplication table as an aid). The exercise requires patience but is instructive.

Before leaving these reciprocals take another look at \(E/1 = \ldots .EJEPUPEJUP \ldots \). Now E, or 5, is a prime number, while the length of the repetend, EUP, is 4. Students of recreational math may recall that when the reciprocal of a prime \(p \) has a period of \(p-1 \) the repeating sequence forms a so-called *cyclic* number. A cyclic number of \(n \) digits has the intriguing property that when multiplied by any number from 1 to \(n \), the resulting product reveals the self-same \(n \) digits arranged in the same cyclic order. Thus:

\[
\begin{align*}
A \times EUP &= EUP \\
B \times EUP &= EUPE \\
C \times EUP &= PEJU \\
D \times EUP &= UPEJ
\end{align*}
\]

In fact *cyclic numeral* would be a better term for these curiosities since their periods obviously depend on the radix of the number system in use. Cyclicity is thus not a property of numbers but only of numbers-written-in-a-certain-base. EUP is the smallest cyclic numeral in base 27, i.e., SV. After 1/E, the next prime reciprocal to produce a new cyclic is 1/17 = 1/Q = \(\ldots \ldots .AOWVFINGYKCDTQLSAOW \ldots \), with period 16. Better
yet, though, 1/29 = 1/AB, which produces the next case, results in a *pangram* of period 28: \(\ldots YCNSXE OVIHJFMZAWGLBUKDQRTM_ YC \ldots \). M alone occurs twice. So if \(c \) is the integer represented by these 28 digits (27 discounting the leading \(_ \)), we have:

\[
\begin{align*}
A \times c &= YCNSXE OVIHJFMZAWGLBUKDQRTM_ YCNSXE OVIHJF \\
B \times c &= AZWGLBUKDQRTM_ YCNSXE OVIHJF \\
C \times c &= BUKDQRTM_ YCNSXE OVIHJFMZAWGL \\
D \times c &= CSMXE OVIHJFMZAWGLBUKDQRTM_ YCNSXE OVIHJF \\
E \times c &= DQRTM_ YCNSXE OVIHJFMZAWGLBUKD \\
F \times c &= EOVIHJFMZAWGLBUKDQRTM_ YCNSXE OVIHJF \\
G \times c &= FMZAWGLBUKDQRTM_ YCNSXE OVIHJF \\
H \times c &= GLBUKDQRTM_ YCNSXE OVIHJFMZAWGL \\
I \times c &= HJFMZAWGLBUKDQRTM_ YCNSXE OVIHJF \\
J \times c &= IJFMZAWGLBUKDQRTM_ YCNSXE OVIHJF \\
K \times c &= JFMZAWGLBUKDQRTM_ YCNSXE OVIHJF \\
L \times c &= KDMZAWGLBUKDQRTM_ YCNSXE OVIHJF \\
M \times c &= LBKDQRTM_ YCNSXE OVIHJFMZAWGL \\
N \times c &= MZAWGLBUKDQRTM_ YCNSXE OVIHJF
\end{align*}
\]

Note how the initial digits of successive products run through the alphabet! For an insight into this, as well as for much more on the lore of cyclic numerals, see Martin Gardner's uniformly marvellous *Mathematical Circus* (Pelican).

* * * * *

Life is short and so is space. The *Dictionary* has played its part; its message should be clear. We began with a novel system for writing numbers with letters; every word was revealed as a unique number; elementary arithmetic became applicable to words. BOOM! A Big Bang marks the explosion into being of an entire universe of mathematical wordplay. Almost anywhere we look in a dictionary of mathematics, a new variation, a new topic, a new area for research, opens up. Thus far we have not even scratched the surface. Just think for a moment of the subjects not even touched on here: logarithms, trigonometry, progressions (complete: AM, BOB, EAR, ...), group theory, probability, calculus, polynomials (solve: \(x^2 + NOWx - SAYING = _ \); \(x \) is a wint), complex numbers, self-descriptive numbers (remember Gödel coding?), and on and on. Our new gematria is no mere rich vein but a vast mine as endless and ramified as mathematics itself; it can never be exhausted.

Sematria

"*Septigesimal gematria* is a jawbreaker; *sematria* is more musical, and even fits fairly well etymologically: *sema* (σῆμα) = sign + *matria* (ματρια) = measuring, i.e., measure expressed in signs. Sematria grew out of my dissatisfaction with standard gematria, a system whose central feature is really its greatest weakness: different words are *equated*. But every word is a unique ordering of letters. What then can we expect of a numerology that is insensitive to letter order? It seemed to me that if we are going to have a system that identifies words with numbers then distinct words must correlate with distinct values. A new approach was evidently needed. To accept \(A = 1 \), \(B = 2 \), ... as a starting point was of course natural, but thereafter a *place-value* system would be demanded. The trouble was that my back-of-the-envelope try-outs would always run into the problem created by zero. The place-holder was vital, I knew that. A to Z were already spoken for. On intuitive grounds the blank ought to stand for zero; it just seemed right. But the blank was invisible and that would prove ruinous! The riddle looked insoluble. And then the penny dropped.

Once an equivalent notation is found, it may be advantageous to label numbers as needed, perhaps just as numbers, perhaps in some other way. We have therefore produced a notation in which we can place digits at length: (at length: \(\ldots X \).

One alternative, as Planck indicated, would be to use 80. That's all.

* * * * *

* Ross Eckler
Once an extra symbol for zero was brought in everything fell into place. The result, I submit, is less an invention than a discovery. It is not just a system for interpreting words as numbers, it is the system: simple, natural, inevitable; the only wonder is that it has not appeared earlier*. But that is explicable, perhaps. For simple as it is, there is no denying that calculating on paper in SV is plain arduous. Pretty excruciating in fact, if carried out at length: try seeking two words whose sum is a word by hand. No, it has taken until now, the age of the personal computer, before sematria could come into its own.

One alternative to SV (suggested to me, aptly enough, in the parking lot of the Max-Planck Institute for Psycho-Linguistics in Nijmegen, by Doug Hofstadter) deserves mention. It is base 26 but without zero: A=1, B=2, ..., Z=26, AA=27, AB=28, etc. That's all. Et voilà: every letter string is a unique integer! However, loss of zero exerts a price, for although we can still add and multiply, we cannot, in general, divide. This is because expressions like A/B have no solution: the smallest number that can be written in this notation is A, or .A if we bring in the unit point. The resulting system is a so-called integral domain, whereas SV has the structure known as a field, a property that allows us to work with any real number. Of course the present system could be extended to include Gardner's more typographical signs: _ = 0, A = l, .., Z = 26, != 27, ?= 28, $= 29, .., but then where do we stop? Base 36? Base 50? Base 100? Without a uniform standard word values will differ from system to system. The alphabet furnishes our only natural standard.

One alternativ e to SV (suggested to me, aptly enough, in the parking lot of the Max-Planck Institute for Psycho-Linguistics in Nijmegen, by Doug Hofstadter) deserves mention. It is base 26 but without zero: A=1, B=2, ..., Z=26, AA=27, AB=28, etc. That's all. Et voilà: every letter string is a unique integer! However, loss of zero exerts a price, for although we can still add and multiply, we cannot, in general, divide. This is because expressions like A/B have no solution: the smallest number that can be written in this notation is A, or .A if we bring in the unit point. The resulting system is a so-called integral domain, whereas SV has the structure known as a field, a property that allows us to work with any real number. Of course the present system could be extended to include more typographical signs: _ = 0, A = l, .., Z = 26, ! = 27, ? = 28, $ = 29, .., but then where do we stop? Base 36? Base 50? Base 100? Without a uniform standard word values will differ from system to system. The alphabet furnishes our only natural standard.

Here and there SV can illuminate an existing topic. Writing in Word Ways for February 1992, Christopher McManus introduced halfway words, which are word trios in which letters in the centre word lie midway in the alphabet between corresponding letters in the outer words, e.g., AGE - JIG - SKI. It is a neat invention. However, now look at it thus: JIG is the average or arithmetic mean of AGE and SKI, because JIG(AGE + SKI) = JIG, a particular instance of JIG(a + b) = c, with a, b and c wints. Halfway trios thus form arithmetic progressions. The converse however need not be true: CAUSES is the mean of BINARY and CUBISM, CIGARS is the mean of LIES and FRAUDS, GHOST is the mean of FAITH and HOUSE, and HINDOO is the mean of LOOP and PROTON (to name but a few), none of which conform to McManus' definition. So halfway trios are actually special instances of arithmetic means, a result of their definition in terms of form (digit properties) rather than content (numerical value).

Sematria offers enormous opportunities for research in new realms of mathematical wordplay but the difficulties entailed in tracking down worthwhile finds should not be underrated. Programming computers to perform arithmetic with words is fairly easy, getting them to recognize and hunt down fruity correlations is something else again. Limitations of space have made it impossible to discuss algorithms here, but I shall be glad to exchange ideas, great or small, on programs or other aspects of sematria with anyone interested. Meanwhile I can only encourage others in their explorations and wonder into what strange worlds this new development may in time lead us.

* Ross Eckler informs me that credit is due to Philip Cohen for first introducing a base 26 system (in which zero was A), in Word Ways for February 1977. I regret having been unaware of Cohen's pioneering work which might otherwise have been discussed here.