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Floristic response to urbanization: Filtering of the bioregional 

flora in Indianapolis, Indiana, USA 

Rebecca W. Dolan, Myla F.J. Aronson, and Andrew L. Hipp 

 

PREMISE OF THE STUDY: Globally, urban plant populations are becoming increasingly important, as 

these plants play a vital role in ameliorating effects of ecosystem disturbance and climate change. Urban 

environments act as filters to bioregional flora, presenting survival challenges to spontaneous plants. Yet, 

because of the paucity of inventory data on plants in landscapes both before and after urbanization, few 

studies have directly investigated this effect of urbanization. 

METHODS: We used historical, contemporary, and regional plant species inventories for Indianapolis, 

Indiana USA to evaluate how urbanization filters the bioregional flora based on species diversity, functional 

traits, and phylogenetic community structure. 

KEY RESULTS: Approximately 60% of the current regional flora was represented in the Indianapolis 

flora, both historically and presently. Native species that survived over time were significantly different in 

growth form, life form, and dispersal and pollination modes than those that were extirpated. 

Phylogenetically, the historical flora represented a random sample of the regional flora, while the current 

urban flora represented a nonrandom sample. Both graminoid habit and abiotic pollination are significantly 

more phylogenetically conserved than expected. 

CONCLUSIONS: Our results likely reflect the shift from agricultural cover to built environment, coupled 

with the influence of human preference, in shaping the current urban flora of Indianapolis. Based on our 

analyses, the urban environment of Indianapolis does filter the bioregional species pool. To the extent that 

these filters are shared by other cities and operate similarly, we may see increasingly homogenized urban 

floras across regions, with concurrent loss of evolutionary information. 

 

Urban areas are surprisingly biodiverse, supporting a considerable number of vascular plant species 

(Aronson et al., 2014). Biodiversity contributes to a city’s capacity to adapt to changing environmental 

conditions by maintaining ecosystem function (Díaz et al., 2006; Tzoulas et al., 2007; Haines-Young and 

Potschin, 2010). Diverse vegetation in cities provides ecosystem services such as air and water quality 

amelioration, flood retention, carbon sequestration, and climate regulation (Bolund and Hunhammar, 1999; 

Nowak et al., 2006; Manes et al., 2012; Gómez-Baggethun and Barton, 2013; Balvanera et al., 2014). A 

better understanding of how urban environments select for or against particular plant species would help in 

managing urban biodiversity, planning and executing sound ecological restoration, and predicting floristic 

responses to environmental change (e.g., Godefroid, 2001; Tait et al., 2005; Pavao-Zuckerman, 2008; 

Williams et al., 2009; Knapp et al., 2016). 

Investigation of floristic change in response to urbanization is hampered, however, by the paucity of 

predevelopment floristic inventories (Stehlik et al., 2007; Knapp et al., 2016). Where data do exist, global 

trends have been difficult to identify. Seemingly simple questions, such as whether cities support more or 

fewer species across their geographic span than the area supported before urbanization, are complicated. 

Species numbers have been found to increase (McKinney, 2008), decrease (Goddard et al., 2010), or stay 

the same (Godefroid, 2001; Dolan et al., 2011a). Where species richness has not changed, there has often 



been considerable turnover, with increases in nonnative species (e.g., Godefroid, 2001; Dolan et al., 2011a; 

Aronson et al., 2015). Varying results are based in part on whether the studies include only native species, 

spontaneous flora growing outside of cultivation, planted species, or all species. Additional confounding 

factors include global differences in regional species pools (La Sorte et al., 2014), age of cities (Aronson et 

al., 2014), and whether cities developed in areas already greatly altered by humans for agriculture or other 

purposes (Kühn and Klotz, 2006; Hahs et al., 2009). 

An alternative to historical/current species presence comparisons is to substitute space for time, using 

inventories of transects or plots that span a range of contemporary development from rural through 

suburban, periurban to city centers (e.g., Sukopp, 2004; Kühn and Klotz, 2006; Wania et al., 2006; Lawson 

et al., 2008; Walker et al., 2009). Using this approach, urban floras have been shown to generally have 

greater species richness than surrounding rural areas (Wania et al., 2006; McKinney, 2008), because of 

increased numbers of both native and nonnative species (Sukopp, 2004) supported by the diverse habitats 

available in cities (Godefroid and Koedam, 2007; McKinney, 2008). This is especially true when planted 

species of gardens and landscaping are included (Williams et al., 2009). However, substituting space for 

time does not directly address the biotic processes that underlie changes in biodiversity (Knapp et al., 2016). 

Another approach to understanding floristic change that accompanies urbanization is to examine shifts in 

plant functional traits. This approach moves beyond merely tabulating changes in species richness as a 

consequence of urbanization; rather, functional trait approaches seek to understand the features of plants 

that are selected by the urban environment (e.g., Godefroid, 2001; Lososovà et al., 2006; Knapp et al., 2009, 

2010). Urban environments are known to filter bioregional floras (Williams et al., 2009); not every species 

found regionally can survive in cities. Habitat destruction, modification and fragmentation, continuous 

disturbance, soil compaction, and heat island effects are just a few of the factors that urban plants must 

tolerate (e.g., McKinney, 2008). Understanding how these factors interact to shape urban floras should 

allow prediction of species change with urbanization (Williams et al., 2009). However, a recent review of 

plant functional traits in 29 urban floras (Williams et al., 2015) found few consistent trends, highlighting 

the complexity of urban plant-environment interactions. 

Phylogenetic approaches complement trait-based approaches to investigating the composition of urban 

floras. Because traits that adapt species to their environments evolve on the tree of life, phylogenetic 

diversity and phylogenetic distribution of taxa in a community are often informative about ecological 

interactions in and ecosystem functions of those communities (Cadotte et al., 2008; Knapp et al., 2012; 

Srivastava et al., 2012). Instead of using species’ presence/absence counts or viewing species as composites 

of functional traits, phylogenetic approaches consider species as the endpoint of evolutionary history, 

organized hierarchically according to their ancestry. 

Williams et al. (2009) predicted that urbanization would result in increased phylogenetic diversity of the 

flora because of the colonization of novel city habitats by exotic species. Where data exist, pre- and 

posturbanization comparisons make it possible to test whether species gains or losses with urbanization 

represent phylogenetically nonrandom filtering of the species pool and, if so, to infer which lineages may 

be preadapted to urban habitats. This approach has also been used to examine species changes along 

contemporary urbanization gradients. For example, phylogenetic diversity of spontaneous yard floras in 

Minneapolis, Minnesota, USA, did not change with housing density (a surrogate for urbanization), but yard 

species were more closely related to each other than were species from a nearby natural area (Knapp et al., 

2012). 

Additional studies are needed to identify plant traits or lineages that are favored or lost through urbanization 

(Thompson and McCarthy, 2008; Knapp et al., 2012; Williams et al., 2015) and to determine the degree to 



which there are common characteristics of urban floras that stand out against the context of habitat 

differences among regions and variation in land use history (Kühn and Klotz, 2006; Knapp et al., 2016). 

By comparing historical data with recent inventories for the city of Indianapolis, Indiana, Dolan et al. 

(2011a) documented changes in species composition over time, including an increase of 7% in nonnative 

species, with an accompanying loss of 2.4 per year of native species, as well as extinctions—particularly 

of rare wetland plants. Native upland forest vegetation during the same interval persisted in parks and 

natural areas throughout the city (Dolan et al., 2011b). For our current study, we build on our understanding 

of changes in the flora of Indianapolis between 1940 and the early 21st century, a time during which the 

city increased in human population size and the built environment expanded. We characterize shifts in the 

phylogenetic relatedness and distribution of functional trait state frequencies among the same species by 

comparing plants present in the city now and the past with the bioregional flora, to document how the urban 

environment filters the species pool in time and space (e.g., Aronson et al., 2016). Finally, we examine trait 

and phylogenetic differences between native plants that persisted in the city’s flora and those that were 

extirpated. Very few studies outside of Europe have addressed floristic changes in spontaneous flora 

associated with urbanization in a single city from the combined approaches of floristic composition, 

phylogenetic distribution, and functional traits. 

 

MATERIALS AND METHODS 

Background on Study Area 

Indianapolis, Indiana, the twelfth largest city in the United States, is located in the midwestern part of the 

country in Marion County. It has an estimated population of more than 900,000 people and an area of 650 

km2 (105,200 ha). The city and the county are the same governmental unit and occupy the same geographic 

space, referred to as “Indianapolis” in this paper. The city is located in the Central Till Plain Section of the 

Central Till Plain Natural Region (Homoya et al., 1985). Indianapolis was almost entirely forested in pre-

European presettlement times, but forest cover was reduced to 13% by the late 1900s (Barr et al., 2002); 

agriculture covered 80% of the landscape in 1922 (http://www.savi.org). Historically, mesic upland forest, 

mostly beech–maple association (Potzger et al., 1956), covered 76% of the county, with small areas of drier 

upland forest on ridges. Wet-mesic depressional forests were scattered throughout the county with 

floodplain forests along major rivers and tributaries. 

Floras and Taxonomic Analysis 

The historical flora of Indianapolis before 1940 was compiled by Dolan et al. (2011a), based on published 

records (Deam, 1940) and specimens in the Friesner Herbarium (BUT; www.butler.edu/herbarium). That 

study also presented the contemporary flora based on recent (within the last 20 yr) inventories conducted 

around the city. These data constitute our current Indianapolis flora list. The USDA Plants Database (USDA 

NRCS, 2016) was used to compile the regional flora by downloading species records for 

Indianapolis/Marion County and all surrounding counties in the Tipton Till Plain Natural Region (i.e., 

Boone, Hamilton, Hancock, Hendricks, Johnson, Madison, Shelby, and Tipton). The county species lists 

obtained from USDA plants are based on herbarium records, as well as historic and current species lists 

from local-, regional-, statewide-, and national-species distribution references, and are constantly being 

updated (USDA NRCS, 2016). Taxonomy of species lists was standardized using the Taxonomic Name 

Resolution Service (2015; Boyle et al., 2013). To determine the beta diversity of the three floras (regional, 

historical Indianapolis, and current Indianapolis) based on presence and absence of species, we calculated 

Sørensen’s distance (βsor). We also calculated βsor among the three floras based only on native species to 

examine the role of nonnative species in differentiating the floras. 



Functional Trait Scoring and Analysis 

For this study, 10 functional traits related to physiognomy, persistence, regeneration, pollination, and 

dispersal were scored for each taxon (Tables 1 and 2). All were categorical. Nativity was also scored and 

included in the trait analysis; while not a functional trait per se, nativity reflects a portion of the evolutionary 

history and the history of ecological interactions of the species. Traits were measured using modified 

versions of Cornelissen et al. (2003) and Pérez-Harguindeguy et al. (2013) standardized protocols for 

measurement of plant functional traits worldwide, adjusted to include only traits appropriate for the 

midwestern USA and those for which most plants had data in Gleason and Cronquist (1991)—the most 

recent comprehensive manual of the flora of Indiana and surrounding states. When data for a trait was not 

present in the manual, Internet sources listed in Appendix S1 (see the Supplemental Data with this article) 

were used. 

We used χ2 contingency tables to analyze differences in the frequency of functional trait states between the 

Indianapolis regional and current floras, between the current and historical floras, and between native plants 

that were present in both the historical and current floras (plants that survived) and native plants that were 

present historically, but are not in the current flora (plants that were extirpated). Analyses were performed 

using the Cross Tabulation function in Systat 12.0 (www.systat.com). Pearson χ2, Yates corrected χ2, and 

Fisher’s exact test (needed when at least one tally value was less than five, i.e., a sparse cell in the tabulation) 

were used to establish significance levels. All gave the same results. We include only the Pearson 

χ2 analysis. 

Phylogenetic Data Preparation and Analysis 

A phylogeny was assembled for the 846 species in our species list that were in the Zanne et al. (2014) 

phylogeny of more than 30,000 vascular plants; this was based on the genes 18S rDNA, 26S rDNA, ITS, 

matK, rbcL, atpB, and trnL-trnF. An additional 326 missing species from our species list were grafted onto 

the tree either at the crown node of their genus (294 species) or according to rules provided by us based on 

known phylogenetic or taxonomic relationships (32 species, Appendices S2 and S3). Pruning and grafting 

were conducted in R (R Core Team, 2016) using the ‘ape’ package (Paradis et al., 2004) and the 

make.matAndTree and weldTaxa functions of the Morton project (https://github.com/andrew-

hipp/morton). Because polytomies and phylogenetic uncertainty introduced by welding taxa onto the base 

of genera may bias phylogenetic signal upwards (Davies et al., 2012), we generated 100 rarefied-to-genus 

trees of a single tip randomly selected per genus (517 tips), and conducted a subset of analyses on the 

rarefied-to-genus set of trees. 

The phylogenetic distribution of species in the historical and contemporary Indianapolis flora was 

characterized using Purvis’s D-statistic (Fritz and Purvis, 2010), which measures the degree of phylogenetic 

autocorrelation of a binary trait (in our case, present [1] vs. absent [0]). Because the difference between 

historical and contemporary floras may be strongly influenced by increases in nonnative species, we 

performed these analyses on the entire flora, as well as the native flora only, and reported both. The 

observed D-statistic for each analysis was compared to two null distributions: one simulated by random 

permutation of the tip states (Prandom), and one simulated under a threshold model on a hidden Brownian 

motion process (PBrownian) (Fritz and Purvis, 2010; Felsenstein, 2012). Phylogenetic diversity of the 

historical and contemporary Indianapolis flora was characterized using mean pairwise distance (MPD) and 

mean nearest taxon distance (MNTD) relative to a taxon-shuffling null. Again, analyses were conducted 

for the full taxon set and the natives-only taxon set; analyses were conducted in R using the ‘caper’ package 

(Orme, 2013) and the ‘picante’ package (Kembel et al., 2010). 



Purvis’s D-statistic (Fritz and Purvis, 2010) was used to investigate phylogenetic signal in three traits: the 

graminoid life form, the woody habit, and abiotic pollination mode. Because the difference between 

historical and contemporary floras may be strongly influenced by increases in nonnative species, we 

performed these analyses on the entire flora and the native flora only, and reported both. Traits were 

visualized on the phylogeny in R using the ‘ggtree’ package (Yu et al., 2016). 

 

RESULTS 

Approximately 60% of the current regional flora (n = 1175) was represented in the Indianapolis flora, both 

historically (n = 699) and currently (n = 689), but these species richness totals mask species turnover, 

because many species were present in only one time period. Beta diversity was similar across the three 

floras, with the historical and current floras having the greatest dissimilarity when including both native 

and nonnative species (βsor = 0.332). The historical flora was more similar than the current flora to the 

regional flora (βsor = 0.237 and βsor = 0.258, respectively). Similar trends were seen when calculating beta 

diversity across the three floras with only native species. Dissimilarity between the historical flora and the 

current flora increased to βsor = 0.361, showing that the introductions of nonnative species between the two 

time periods decreased beta diversity. The same trend was shown between the regional flora and the 

historical flora (βsor = 0.253), as well as the regional and current floras (βsor = 0.260). 

Functional Traits 

The composition of most functional traits was not significantly different among the three floras. Only one 

trait—pollination mode—differed between plants present in the current Indianapolis flora compared with 

the regional flora (Table 1). Plants with biotic pollination are highly significantly overrepresented, 

increasing in frequency by 6%, with a concomitant decrease in abiotic pollination. 

Compared to Indianapolis’ historical flora, the current flora has significantly more nonnative plants (28% 

vs. 22%) (Table 1). There are also significant differences in growth forms; more graminoids historically, 

and more forbs, trees, and shrubs currently. As in the regional vs. current city comparison, biotic pollination 

is also different between the two floras. There was a 7% increase in plants characterized by biotic pollination 

in the current compared with the historical flora. 

More trait differences were detected between native plants that were survivors (n = 381), present in both 

the historical and the current flora, and those that were extirpated (n = 164), present in the historical flora, 

but not the current (Table 2). Here, growth form, life span, pollination, and dispersal were different between 

the floras. Aquatic plants and grasses decreased, while forbs were overrepresented among survivors. 

Therophytes (= annuals) tended to be lost, along with plants with abiotic pollination. Plants that persisted 

tended to be less likely to have unassisted dispersal, while animal-dispersed seed was overrepresented. 

Phylogenetic Signal in Floristic Occurrence Data 

The historical flora of Indianapolis samples randomly from the phylogeny of the regional flora for both the 

full suite of species (D = 0.965, Prandom = 0.097), and the natives only (D = 0.972, Prandom = 0.169) (Appendix 

S4). The current flora of the Indianapolis region, however, samples nonrandomly from the phylogeny of 

the regional flora whether the entire suite of species (D = 0.843, Prandom < 0.001) or only native species are 

considered (D = 0.833, Prandom < 0.001) (Fig.1, Appendix S4). This result holds on trees rarefied to genus 

(for all taxa, D = 0.848 ±0.036 SD; Prandom = 0.006 ± 0.017 SD). Nativity is very strongly phylogenetically 

structured (D = 0.480, Prandom < 0.001). All tests conducted show less phylogenetic signal, however, than 



expected if these were true traits evolving under a Brownian motion threshold model (D > 0, PBrownian < 

0.001). 
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Phylogenetic diversity, as estimated using MNTD, increases from the historical to the contemporary 

Indianapolis flora in both the native species set (from 41.38, P = 0.072 to 47.15, P = 0.704) and in the full 

species set (from 35.06, P = 0.036 to 39.34, P = 0.803). An increase in MNTD means that the average 

phylogenetic distance from a species to its nearest neighbor in the contemporary is greater than the average 

distance in the historic flora, although the difference is not significant. Phylogenetic diversity, as estimated 

using MPD, shows little change from the historical to the contemporary Indianapolis flora, suggesting that 

there is no change in distance along the deepest nodes of the phylogeny: even if there is species turnover, 

there is not a systematic thinning of major clades from the historic to the present flora. No observed patterns 

in MPD/MNTD are significant after Bonferroni correction (N = 6 tests). 

When mapped to phylogeny (Fig. 1), the trait data for native species revealed both the graminoid habit (D = 

−0.550, PBrownian < 0.001, Prandom < 0.001) and abiotic pollination (D = −0.356, PBrownian = 0.002, Prandom < 

0.001) are significantly more phylogenetically conserved than expected under both the Brownian and the 

random null. The woody habit is indistinguishable from the Brownian null but significantly more clustered 

than expected under the random null (D = −0.239, PBrownian = 0.102, Prandom < 0.001). The same patterns are 

significant for the full suite of species (graminoid habit: D = −0.510, PBrownian < 0.001, Prandom < 0.001; 

abiotic pollination: D = −0.305, PBrownian = 0.004, Prandom < 0.001; woody habit: D = −0.226, PBrownian = 

0.077, Prandom < 0.001). 

 

DISCUSSION 

Understanding which species are filtered from the regional species pool into cities sheds light on how cities 

affect assembly of urban floras (Aronson et al., 2016). The flora of a city is filtered directly from the regional 

species pool, including introduced species that are either broadly introduced or unique to the urban 

environment. The processes by which species in the regional pool are filtered by the cities’ environments 

are just beginning to be understood. A taxonomic, functional, and phylogenetic approach, as taken here, 

allows us to understand the patterns by which species are filtered and infer processes driving the filtering 

of species. Our unique data set combines the regional, historical, and modern floras of the city of 

Indianapolis. Our analyses demonstrate that urbanization can increase taxonomic beta diversity and that the 

filtering processes in cities selects for certain clades that are defined in part by phylogenetically 

conservative traits, resulting in phylogenetically clustered floras. 

 



 

We found the highest beta diversity when comparing the current flora of Indianapolis to the historic flora. 

Differentiation between the current and historical floras increased when only natives were analyzed, 

indicating that the native species pool differentiates the floras, while the nonnatives have a homogenizing 

effect on beta diversity. Many studies have shown similar trends, attributing biotic homogenization to the 

extirpation of native species and the introductions of nonnative species (e.g., McKinney and Lockwood, 

 



1999). Increases in urban land cover, loss of agricultural lands and natural habitats, and the introductions 

of nonnative species during urbanization are expected to homogenize city biotas when compared to rural 

areas (McKinney, 2008). 

Patterns of functional trait state composition can provide insight into how the urban environment filters the 

regional flora (Knapp et al., 2008; Knapp et al., 2012; Aronson et al., 2016). For Indianapolis, there is a 

highly significant shift toward biotic pollination, when comparing both the regional and historic floras with 

the current flora. The current flora is composed of more trees and shrubs and fewer grasses than historically 

present. Dolan et al. (2011a) noted the largest physiognomic group added to the flora of Indianapolis over 

the last 70 years was ornamental shrubs escaped from cultivation. The increase in the current flora of plants 

pollinated by animals may reflect human preference for showy flowers and suggests cities may be good 

places for pollinators. 

Native plants that persisted in the Indianapolis flora over the last 70 years tended to be perennials (geophytes 

and phanerophyte life forms) that are animal pollinated and animal dispersed. Extirpated plants were 

characterized as abiotically pollinated annuals with unassisted dispersal. These floristic changes occurred 

concomitantly with a landscape shift from agricultural fields to urban development. Agriculture cover 

decreased from 80% in 1922, to 18% in 1990 in Indianapolis (http://www.savi.org) while the human 

population doubled and urban/suburban land use increased. Many crop and pasture-land weeds are annuals 

(e.g., Lososová et al., 2006). 

Our findings in some cases confirm former findings. Godefroid and Koedam (2007) and Knapp et al. 

(2010), for example, found increases in woody plants just as we did. However, our findings stand at odds 

with Knapp et al. (2008), who found less insect pollination with urbanization, and Palma et al. (2016) 

finding of increases in annuals. The discrepancy in our findings about insect pollination may have to do 

with the fact that graminoids decrease so strongly with urbanization in Indianapolis, and our temperate 

graminoids are all anemophilous. A recent review of 29 studies of plant functional traits in urban 

environments (Williams et al., 2015) found few consistent trends among cities, ascribing the result to 

variability in the consistency and strength of urban stressors and the importance of local factors. They 

describe urban plant environment interactions as complex, with many traits influenced by multiple 

disturbance effects. Comparisons among studies are complicated by the choice of traits studied and by 

limited information available on functional traits, such as seed mass and specific leaf area, for some floristic 

regions, including North America. Our results highlight the influence of the landscape matrix in which 

urbanization occurred (in our case a shift from an agricultural landscape to a built environment) on the 

species and traits able to persist in cities. This historical artifact of the landscape in which cities developed, 

e.g., urbanization on land that had already been converted from natural vegetation to agriculture, has been 

cited by others (e.g., Knapp et al., 2008 and Knapp et al., 2016) as strongly influencing direct floristic shifts 

following urbanization. Knapp et al. (2016) suggest their results for Halle, Germany may apply to other 

European cities with similar histories of land-use conversion. Likewise, our results should apply to other 

cities in the midwestern United States. 

We show that the current Indianapolis flora is phylogenetically nonrandomly sampled from the regional 

species pool. Stated another way, the probability of a species passing through the urbanization filter is in 

part a function of its evolutionary history, its clade. Extinctions of phylogenetically distinct natives with an 

increase in phylogenetically common native and nonnative plants may cause such a trend (Knapp et al., 

2016). This also suggests that the urbanization process in Indianapolis selects for phylogenetically 

constrained traits. In fact, we observe that this urbanization process selects against graminoids and for biotic 

pollination, both of which are phylogenetically conserved. Urbanization also selects for woodiness, which 

is restricted to a relatively small number of clades, with a preponderance of species in the rosids. Thus, the 



phylogenetic filtering we observe in our study from the historical to the contemporary flora appears to be 

primarily a filtering of life form, which, in the case of graminoids, is linked to pollination mode. 

Based on our analyses, the urban environment of Indianapolis filters the bioregional species pool, selecting 

for specific clades on the tree of life, limiting the plants that can grow in the city in ways not detected 

historically. To the extent that these filters are shared by other cities and operate in the same direction, 

homogenization of urban floras across regions and loss of evolutionary information may result (Knapp et 

al., 2016). Habitat heterogeneity within individual cities means they are not likely to be floristically 

homogenous (Kalusová et al., 2016), but urban floras are likely to become more homogenous regionally, 

resulting in cities that are less resilient to global climate change (Hahs and McDonnell, 2016). A better 

understanding of how plants respond to the novel habitats of cities is needed to help in planning for the 

future. 
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