
Butler Journal of Undergraduate Research Butler Journal of Undergraduate Research

Volume 3

2017

Tango: A Spanish-Based Programming Language Tango: A Spanish-Based Programming Language

Ashley M. Zegiestowsky
Butler University, ashleyzeg@gmail.com

Follow this and additional works at: https://digitalcommons.butler.edu/bjur

 Part of the Programming Languages and Compilers Commons, and the Spanish Linguistics Commons

Recommended Citation Recommended Citation
Zegiestowsky, Ashley M. (2017) "Tango: A Spanish-Based Programming Language," Butler Journal of
Undergraduate Research: Vol. 3 , Article 11.
Retrieved from: https://digitalcommons.butler.edu/bjur/vol3/iss1/11

This Article is brought to you for free and open access by the Undergraduate Scholarship at Digital Commons @
Butler University. It has been accepted for inclusion in Butler Journal of Undergraduate Research by an authorized
editor of Digital Commons @ Butler University. For more information, please contact digitalscholarship@butler.edu.

https://digitalcommons.butler.edu/bjur
https://digitalcommons.butler.edu/bjur/vol3
https://digitalcommons.butler.edu/bjur?utm_source=digitalcommons.butler.edu%2Fbjur%2Fvol3%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.butler.edu%2Fbjur%2Fvol3%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/549?utm_source=digitalcommons.butler.edu%2Fbjur%2Fvol3%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.butler.edu/bjur/vol3/iss1/11?utm_source=digitalcommons.butler.edu%2Fbjur%2Fvol3%2Fiss1%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@butler.edu

Tango: A Spanish-Based Programming Language Tango: A Spanish-Based Programming Language

Cover Page Footnote Cover Page Footnote
Thank you to Ankur Gupta and Alex Quintanilla for feedback on an earlier version of this thesis.

This article is available in Butler Journal of Undergraduate Research: https://digitalcommons.butler.edu/bjur/vol3/
iss1/11

https://digitalcommons.butler.edu/bjur/vol3/iss1/11
https://digitalcommons.butler.edu/bjur/vol3/iss1/11

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

TANGO: A SPANISH-BASED PROGRAMMING LANGUAGE

ASHLEY M. ZEGIESTOWSKY, BUTLER UNIVERSITY
MENTOR: JONATHAN SORENSON

Abstract

The first part of this article deals with the creation of my own Spanish-based
programming language, Tango, using Spanish key words (instead of English
key words). The second part relates to the design and implementation of a
compiler that follows the grammar rules outlined in the Tango language in
order to successfully lexically analyze, parse, semantically analyze, and
generate code for Tango. This article begins with a description of the specific
goals achieved in the Tango language, an explanation and brief examples of
the Tango Grammar, a high-level overview of the compiler design and data
structures used, and concludes with ideas for future work and helpful advice.
The full grammar, list of keywords, and source code for the compiler can be
found in the Appendices.

Introduction

This project, to write my own Spanish programming language, provided me
with a way to combine both of my fields of study, Computer Science and
Spanish. Before starting this project, I knew very little about the details that
went into designing a programming language and compiler. From a high-
level perspective, I learned about the importance of context-free grammars
and the different phases that make up a compiler, which will be explained in
further detail later.

Specific Goals

In creating the Tango programming language as well as the accompanying
compiler, there are five main goals around which I centered this article.
These goals are listed as follows:

1. To create a user-friendly programming language utilizing key words
and a syntactic structure that closely resembles the Spanish language.

!172

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

2. To design the language with a similar technical feel to that of some of
the most widely used languages in both an educational and
professional environment, such as Java and C++.

3. To allow the compiler to read and interpret both keywords and
variable identifiers with special characters native to the Spanish
language, such as accents and tildes above certain letters.

4. To provide a compiler that cross-compiles to run against the Java
compiler instead of directly generating machine code.

5. To assure that the Tango language is Turing complete, or
computationally universal.

The first goal forms an essential backbone to the entire project as a whole.
There are over thousands of different programming languages utilized and
available across a wide array of countries and cultures, and new languages
and frameworks are being created everyday. However, a huge majority of
these programming languages are English-based, meaning the keywords and
syntactic structure are based on the English language [6]. Less than a
handful of Spanish-based programming languages have been created
including (but not limited to):

• GarGar, a Spanish procedural programming language based on Pascal
for learning purposes [6].

• Latino, a language with completely Spanish-based syntax [6].

• RoboMind, an educational programming language available in
multiple languages (including Spanish) [6].

Although the above mentioned Spanish-based programming languages
accomplish a similar goal to the Tango language, Tango differs from these
pre-existing languages in three key areas. First, the Tango language and
compiler incorporate and support the usage of special characters (such as the
accent mark and tilde) in both the key words of the language as well as any
variables, constants, and function names generated by the user. Second, the
compiler implementation utilizes cross-compilation to Java which facilitates
simple installation and usage. The only requirement to successfully to
download, compile, and execute a program written using Tango is to have a
stable version of Java installed, while the Latino language, for example, lists
thirteen different machine requirements in its installation documentation.
Third, the key words and syntactical structure of Tango have a deliberate
“Java-like” flavor with the intent to ease the transition to the usage of Java
(or any similar language) given that Java is one of the most commonly used

!173

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

server-side languages in the workforce today. All three of these differences
either improve upon the existing implementations of Spanish based
programming languages or offer additional features not present in the
languages mentioned earlier that are more analogous to the Spanish
language itself.

 The purpose and goal behind creating Tango is to contribute to the
growing technical community that spans across many languages and
cultures. With the creation of this prototype version of a Spanish-based
programming language, the educational and professional reach of such a tool
could prove to be very beneficial in engaging and inspiring both young minds
and experienced professionals within the field of technological development.

 The second of the above-mentioned goals relates closely to the first goal
in the sense of the basic design and feel of the programming language. It is
essential that Tango is both intuitive to a native Spanish speaker, yet also
compatible from a logical and syntactical standpoint to other more commonly
used programming languages.

 The third goal, which deals with the handling of special characters,
proves to be highly unique to Tango. Unlike the English language, the
Spanish language employs the use of accents and tildes above select letters
forming characters that do not exist in English. These accents and/or tildes
are essential to the language and are crucial to the meaning of certain words.
The lack of an accent or tilde could change the meaning of the word entirely.
Therefore, allowing for the compiler to adequately scan and process the
possibility of these special characters is vital to the correctness and
representation of the Spanish language as demonstrated in the Tango
programming language.

 The fourth goal mentioned pertains to a more technical implementation
of compiler design. When designing the compiler, I chose to cross-compile to
Java instead of generating machine code directly in the code generation
phase. This decision, given the relatively short time provided to complete
such an ambitious project, allowed me to create a more verbose and
comparatively functioning programming language. If I had chosen to
implement a compiler that generated machine code, the final product would
be more limited both in scope and overall functionality. Another benefit to
choosing to cross-compile to Java is that the Java compiler is machine
independent. Also important to note, the target language is Java and the
compiler is written in Java. However, these two choices are independent of

!174

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

one another. More specifics of the compiler design and implementation will be
discussed later.

 The fifth and final goal assures that the Tango language will be Turing
complete, meaning computationally universal. A language is considered
Turing complete if it can be used to simulate any single-taped Turing
machine [9]. Moreover, a “Turing machine can do everything that a real
computer can do” [9]. A universal language does not have to be complex [2].
In the case of Tango, the language itself is not extremely complex, but it does
meet the requirements to be considered Turing complete.

 Overall, these five main goals helped drive and inspire both the research
and implementation process necessary to successfully create a prototype
programming language based primarily on the Spanish language.

Context-Free Grammar (CFG)

CONTEXT-FREE GRAMMAR AND TANGO

The grammar for the Tango programming language is a combination of
original productions and recognized production patterns from outside
resources. The basic definition of a context-free grammar is as follows:

A grammar consists of a collection of substitution rules, also called
productions. Each rule appears as a line in the grammar, comprising a
symbol and a string separated by an arrow. The symbol is called a
variable, or nonterminal. The string consists of variables and other
symbols called terminals. One variable is designated as the start
variable [9].

The purpose of a context-free grammar is to provide rules from which a
“syntactically valid string of terminals” can be generated [7]. The process of
generating a valid string of terminals is referred to as a derivation that can
be described as “a series of replacement operations that shows how to derive
a string of terminals from the start symbol” [7]. This same information can be
represented pictorially with the use of a parse tree (which will be utilized
later when providing sample productions) [9].

 There are two main types of derivations: rightmost derivations and
leftmost derivations. For the purposes of simplicity and consistency, the
select examples shown will be utilizing a leftmost derivation meaning that “in
every step of the derivation, the leftmost nonterminal” is selected for
replacement [5]. Furthermore, the Tango grammar can be classified as LL(1)

!175

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

which stands for the leftmost derivation when the input is scanned from left
to right with one-token look ahead. To further clarify, a grammar is said to be
LL(1) given that, “any two rules defining the same nonterminal must have
disjoint selection sets [1]. Meeting the condition to declare a grammar LL(1)
is crucial in order to construct a recursive descent parser which will be
further explained in Compiler Design.

SPANISH LANGUAGE INFLUENCE & NUANCES IN GRAMMAR

Other important aspects of the Tango grammar worth mentioning relate to
the selection of key words and syntactic structures in regards to the Spanish
language. Three main challenges occurred when selecting key words and
syntax:

1. How should the unpredictability of masculine or feminine nouns or
descriptive keywords be handled?

2. What verb tense should be used when using verb-like keywords?

3. How should the overall syntax be structured in a way that closely
resembles the overall structure of the Spanish language?

 As for question one, a simple solution was utilized in order to account for
descriptive keywords with different character endings depending upon the
object being described. For example, in the Spanish language masculine
words end in the letter ‘o’ where as feminine words in the letter ‘a’. Since
these word endings are dependent upon the noun or object being described,
this created a problem of consistency when selecting keywords. However,
instead of such words ending in an ‘o’ or ‘a’, all key words that fit this criteria
end with the symbol ‘@’. The symbol ‘@’ has become more commonly used and
accepted within the Spanish community for words that could be either
masculine or feminine. Some of the keywords for the Tango language that fall
under this category include: nul@ (null), vaci@ (void), públic@ (public), nuev@
(new), ciert@ (true), fals@ (false). Note, the word in parenthesis following the
Spanish key word is an English equivalent for reference for those unfamiliar
with the Spanish language.

 As for the second question regarding verb tense for verb-like keywords,
yet another simple solution was implemented. In most English-based
programming languages examples of verb-like keywords include words such
as do, return, and print, to list a few [10]. In English, these verbs are in a
command form (which there is only one kind of command conjugation for each
verb regardless of the subject or audience). However, in Spanish, there are

!176

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

multiple different ways to conjugate the command form of a verb and even
more differences amongst different countries and dialects. In order to
establish a consistent representation of verb-like keywords that would be
understood by all Spanish speakers, the infinitive form of the verb serves as
the best method of representation. For example, the following are Spanish
verb-like keywords present in the Tango programming language: hacer (do),
regresar (return), imprimir (print). Again, the word in parenthesis, is the
English equivalent to the Spanish key word.

 As for the third and final question, mirroring the Spanish language from
a syntactical perspective proved to be the most difficult to emulate. However,
one specific way in which this is prevalent in the grammar is the placement
of the access identifiers in relation to a function definition. In the English
language, adjectives are typically placed before the noun they are describing;
take for example the phrase, “the long red dress”. In the Spanish language,
adjectives are typically placed after the noun they are describing: take for
example, the phrase, “el vestido largo y rojo” (which would directly translate
to English as “the dress long and red”). This same principle can be seen in the
syntax relating to a function definition demonstrated in Figure 1.

Figure 1. Note the differences between the two function definitions are very subtle
but reflect the structural nuances of the Spanish language.

SAMPLE TANGO PRODUCTIONS AND DERIVATIONS

This section will walk through a simple example of productions and
derivations using Tango’s grammar. The full grammar and list of keywords
(as well as their relative English equivalent) are listed in detail in Appendix
A.

 As mentioned at the beginning of this section, Tango’s grammar is a mix
of original productions and predefined productions from outside sources.
Henceforth, the Tango grammar utilizes portions of the calculator grammar

!177

Example Java Function Definition (English):

public void func_name (int param1, int param2) {…}

Example Tango Function Definition (Spanish):

func func_name públic@ vaci@ (ent param1, ent
param2) {…}

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

detailed in Michael Lee Scott’s Programming Language Pragmatics [7].
Select rules, or productions, are outlined and displayed in Figure 2:

Figure 2. Grammar productions (rules) from the LL(1) calculator grammar [7].

As mentioned earlier, only a small portion of the Tango grammar is
illustrated in the above figures (Figure 2-6). To see the complete grammar
and list of keywords, refer to Appendix A.

Compiler Design

The compiler design and implementation comprise a large portion of this
article and are closely related to the grammar outlined in the previous
section. The compiler construction can be broken into four different phases:
lexical analyzer (scanner), parser, semantic analyzer, and code generator [2].

 The lexical analyzer, or scanner, scans the source program character by
character “recognizing which strings of symbols from the source program
represent a single entity, or token” [2]. The lexical analyzer also identifies
and categorizes the tokens according to their value in relation to the rest of
the program. Some of the token types present in the Tango scanner include:
keywords, variable identifiers, numeric values, arithmetic operators, special
characters, etc.

!178

stmt ! id = expr;
expr ! term term_tail
term_tail ! add_op term term_tail |
term ! factor factor_tail
factor_tail ! mult_op factor factor_tail |
factor ! (expr) | id | number
add_op ! + | -
mult_op ! * | /

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

Figure 3. First, Follow, & Predict Sets for the grammar productions in
Figure 2 [7].

!179

FIRST

 stmt{ id }

 expr{ (, id, number }

 term_tail { +, -}

 term { (, id, number }

 factor_tail { *, / }

 factor { (, id, number }

 add_op { +, - }

 mult_op { *, / }

FOLLOW

 id { +, -, *, /, =, id}

 number { +, -, *, /,), id }

 ({ (, id, number }

) { +, - , *, /, id}

 = { (, id, number }

 + { (, id, number }

 - { (, id, number }

 * { (, id, number }

 / { (, id, number }

 expr {), id, ; }

 term_tail {), id }

 term { +, -,), id }

 factor_tail { +, -,), id }

 factor { +, -, *, /,), id }

 add_op { (, id, number }

 mult_op { (, id, number }

PREDICT

1. stmt−→id = expr {id}

2. expr −→ term term_tail {(,
id, number}

3. term tail −→ add_op term
term_tail {+, -}

4. term tail −→ {), id}

5. term −→ factor factor_tail
{(, id, number}

6. factor tail −→ mult_op
factor factor_tail {*, /}

7. factor tail −→ {+, -,), id}

8. factor−→ (expr) {(}

9. factor−→ id {id}

10. factor −→ number {number}

11. add_op−→ + {+}

12. add_op−→ - {-}

13. mult_op−→ * {*}

14. mul_top−→ / {/}

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

Figure 4. Leftmost derivation for the string, x=5;

Figure 5. Parse Tree for the string, x=5; [8]. Note: E stands for ε, the empty
string

!180

stmt ! id = expr;
stmt ! x = expr;
stmt ! x = term term_tail;
stmt ! x = factor factor_tail term_tail;
stmt ! x = 5 factor_tail term_tail;
stmt ! x = 5 term_tail; (* factor_tail
!)
stmt ! x = 5; (* term_tail !)

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

Figure 6. Parse tree for the sample Hello World program as seen in
Appendix B [8]. Note: E stands for ε, the empty string

 The second phase is the parser. Since the Tango language has an LL(1)
context-free grammar, a recursive descent parser is the method utilized in
completing this phase of the compiler. The parser will check for “proper
syntax, issue appropriate error messages, and determine the underlying
structure of the source program” [1]. The recursive descent parser illustrates
“top-down (predictive) parsing” which relates directly to the grammar [7].

 The third phase consists of semantic analysis. The semantic analyzer is
intertwined with the parser. Whereas the parser checks the program for
syntactic correctness according to the grammar rules, the semantic analyzer
checks data types and other logical checks that can not be performed by the
parser alone [1].

 The fourth and final phase is code generation. During the code
generation phase, a traditional compiler translates the successfully parsed
tokens or syntax trees into “machine language (binary) instructions, or to
assembly language” [2]. As mentioned previously in the section on Specific
Goals, the Tango compiler does not directly generate machine code. In fact,
the tango compiler, in the code generation phase, generates equivalent Java
code, which is then run against the Java compiler. The reasoning for choosing
to cross compile to Java is explained in further detail in the section on
Specific Goals.

 If an error occurs during any phase of the compiler (lexical scanner,
parser, semantic analyzer, or code generator), the compiler terminates and an

!181

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

error message is displayed in the console with the line number and a
potential error message depending on the error.

CODE STRUCTURE & DATA STRUCTURES

The overall structure of the compiler is a Java based application with five
classes:

• TangoCompiler.java – This is the main class from which the program
runs. When the program starts, the program prompts the user to enter
the name of an input file to be processed. Instances of the
TangoScanner and TangoParser objects are instantiated in order to
begin processing the source program.

• TangoScanner.java – This class constitutes the lexical analysis, or
scanner, phase of the compiler. The TangoScanner class utilizes
instances of the Token class in order to create an array of tokens. Each
time the scanner recognizes a new Token, a new Token object is
created and added to the array of tokens which utilizes the ArrayList
data structure.

• Token.java – This class contains all of the details and data related to
the different token types available (including keywords) in the Tango
language. A mix of simple arrays and single line functions are utilized
inside the Token class. The array of Token objects is then processed in
the TangoParser in which some of the simple functions created in the
Token are used to perform necessary checks when moving through the
parsing process. The Token class is also where the symbol table is
stored which uses the Hash Table data structure.

• TangoParser.java – This class is the most intensive portion of the
compiler. The TangoParser parses the array of tokens produced by the
scanner using a recursive descent parser. Therefore, recursion is
employed in order to move through the token stream. Semantic
analysis occurs during this phase in which stack data structures are
utilized. The CodeGenerator class is also instantiated inside of the
parser and recursively generates Java code as the tokens are parsed.

• CodeGenerator.java – This class uses a FileWriter in order to write the
equivalent Java code to a new file. The class consists of a multitude of
void functions that are called within the recursive descent parser in
order to successfully write to a file the newly generated code that can

!182

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

then be compiled and run against the java compiler using the javac
and java command.

Conclusion

FUTURE WORK

After investing close to eight months on the creation of the Tango
programming language and compiler, I am proud to say that I have produced
a functional, yet limited, prototype language. If I had more time to invest in
this project, there is plenty of work left in order to make Tango a fully
functional and bug free programming language that could be utilized
primarily for educational purposes. Some of the additions and improvements,
I would integrate into the language would include:

• Expand the Functionality – With such limited time, I was only able to
implement some of the most basic functionality. Integrating more
complex data structures, object-oriented principles, and additional
libraries would both complement and improve upon the existing
source code.

• Optimization & Debugging – Very little thought or effort was put into
optimizing both performance and memory when implementing the
compiler. This would be an important improvement in order to truly
test the power and limitations of the compiler.

• Modify Code Generation – The current complier cross compiles to Java
by generating equivalent Java code that is run against the Java
compiler. By modifying the code generation phase to directly generate
machine code instead of Java code would allow the Tango language to
no longer be dependent upon the Java compiler. Although this may
increase efficiency and performance for the Tango compiler, this
implementation would limit Tango to a fixed platform.

• Interactive Website – It would be beneficial as well to create an online
platform or downloadable resource to which the public could access
freely and directly in order to both write and run Tango programs.
Along with this resource, creating a simple tutorial to aid users in
programming in the Tango language with a link to the complete
documentation would greatly complement all of the work that has
been put forth in creating this project.

!183

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

HELPFUL ADVICE

To anyone interested in completing a similar project, there are several tidbits
of advice that are helpful and important to keep in mind when undergoing a
project of this magnitude. First of all, make a timeline of important goals and
milestones, and stick to it! Although this is a simple and obvious strategy
when undergoing any type of project, it becomes even more crucial when
dealing with a large code base with lots of moving parts.

Secondly, the grammar, derivations, and syntax trees are just as important
as the actual code written to implement the compiler. If your grammar has
errors (such as not meeting LL(1) criteria or highly ambiguous), then your
compiler will have errors (making it even more difficult to implement). It is
easier to fix an error when it is still just a grammar rule rather than when it
has already been faultily integrated into the compiler. Lastly, start small and
build up from there. It is tempting to want to implement everything at once.
However, start with the basic functionality and then continue to modify and
expand the language and compiler accordingly. Those are some of the pieces
of advice that I would give to anyone with the desire to delve into compiler
theory and design.

Whether or not the Tango programming language will ever be used or viewed
outside the scope of this undergraduate thesis does not equate to the success
or failure of the final product produced. The learning curve, work ethic, and
technical knowledge I gained from completing this project cannot be
monetized. Nevertheless, I have attained a new-found pride in the progress I
have made in regards to the Tango language and developed a well-earned
confidence in my technical abilities as a whole. The Tango programming
language demonstrates a small but vital attempt to widen the reach of
technological advancement across language and cultural barriers beginning
in the educational realm and edging towards a professional environment. The
language itself is young and in need of maturation and finesse. If nothing
else, Tango can serve as a jumping off point and inspiration into the world of
Spanish-based programming languages.

References

Bergmann, Seth. Compiler Design: Theory, Tools, and Examples. Dubuque,
Iowa: W.C. Brown Publishers, c, 1994.

Brookshear, J. Glenn, David T. Smith, and Dennis Brylow. Computer Science:
An Overview. 11th ed. Harlow: Addison-Wesley, 1997.

!184

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

Galimberti Jarman, Beatriz, et al. The Oxford Spanish Dictionary: Spanish-
English/English-Spanish. New York: Oxford UP, 2003.

"Online Language Dictionaries." English-Spanish Dictionary. http://
www.wordreference.com/es/translation.asp

Parsons, Thomas W. Introduction to Compiler Construction. New York:
Computer Science Press, 1992.

Pigott, Diarmuid. HOPL: An interactive roster of programming languages.
Murdoch University, School of Information Technology, 1995.

Scott, Michael Lee. Programming Language Pragmatics. 3rd ed. Amsterdam:
Elsevier/Morgan Kaufmann Pub., 2009.

Shang, Miles. Syntax Tree Generator. 2011. Web. http://mshang.ca/syntree/

Sipser, Michael. Introduction to the Theory of Computation. 3rd ed. Boston,
MA: Cengage Learning, 2013.

Weiss, Mark Allen. Data Structures & Problem Solving using Java. Boston:
Pearson/Addison Wesley, 2010.

!185

http://www.wordreference.com/es/translation.asp
http://www.wordreference.com/es/translation.asp
http://mshang.ca/syntree/

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

Appendix A: List of Keywords & Full Grammar

*Both wordrefernce.com [4] & The Oxford Spanish Dictionary [3] were
referenced when selecting the appropriate Spanish keyword.

ent int

dec double

cadena String

lista []

bool Boolean

ciert@ true

fals@ false

nuev@ new

si, sino, si, sino if, else, if, else

para for

mientras, hacer mientras while, do while

clase class

func$ principal() public static void main(String [] args)

estátic@ static

vaci@ void

públic@ public

nul@ null

regresar return

escáner scanner

imprimirln println

imprimir print

sigEnt nextInt

(single line comment) // (single line comment)

!186

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

FULL GRAMMAR

High Level Productions

program → clase id accessMod { classContents }

accessMod → públic@

classContents → funcMain

funcMain → func$ principal() { stmtList }

stmtList → stmt stmtList |

Library Call Productions

stmt → imprimirln(printContent);

printContent → “stringValue” | id

Declaration & Assignment Productions

stmt → id = expr;

stmt → dataType id decTail;

decTail → = expr |

dataType → ent

dataType → dec

dataType → cadena

dataType → bool

expr → term termTail

expr → boolOp

termTail → addOp term termTail |

term → factor factorTail

!187

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

factorTail → multOp factor factorTail |

factor → (expr)

factor → id

factor → number

addOp → +

addOp → -

multOp → *

multOp → /

boolOp → ciert@

boolOp → fals@

If Statement Productions

stmt → si (condition) { stmtList } siTail

siTail → sino sinoTail |

sinoTail → { stmtList } | si (condition) { stmtList } siTail

condition → expr conditionTail

conditionTail → compOp expr | ε
compOp → == | != | > | < | >= | <=

While Loop Productions

stmt → mientras (condition) { stmtList }

stmt → hacer { stmtList } mientras (condition);

!188

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

FIRST, FOLLOW, PREDICT SETS 1

Key

Red = keyword/terminal

Blue = terminal

Normal = non-terminal

High Level Sets

First

program { clase }

accessMod { públic@ }

classContents { func$ }

funcMain { func$ }

stmtList { mientras, hacer, si, id, ent, dec, cadena, bool, imprimirln }

stmt { mientras, hacer, si, id, ent, dec, cadena, bool, imprimirln }

Follow

classContents { ‘}’ }

funcMain { ‘}’ }

stmtList { ‘}’ }

stmt { ‘}’, mientras, hacer, si, id, ent, dec, cadena, bool, imprimirln }

Predict

program → clase id accessMod { classContents } { clase }

accessMod → públic@ { públic@ }

classContents → funcMain { func$ }

funcMain → func$ principal() { stmtList } { func$ }

 Separated by similar grammar concepts for organization1

!189

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

stmtList → stmt stmtList { mientras, hacer, si, id, ent, dec, cadena,
bool, imprimirln}

stmtList → { ‘}’ }

Library Call Sets

First

stmt { imprimirln } 2

printContent { “, id }

Follow

printContent { ‘)’ }

Predict

stmt → imprimirln(printContent); { imprimirln }

printContent → “ stringValue “ { “ }

printContent → id { id }

Declaration & Assignment Sets

First

stmt {id, ent, dec, cadena, bool} 3

dataType { ent, dec, cadena, bool }

decTail { =, }

expr { ‘(‘, id, number, ciert@, fals@ }

term { ‘(‘, id, number}

termTail { +, -, }

factor { ‘(‘, id, number }

factorTail { *, /, }

 Limited to FIRST set of library call productions2

 Limited to FIRST set of declaration productions3

!190

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

addOp { +, - }

multOp { *, / }

Follow

id { =, *, /, +, -, ;, ‘)’ }

number { =, *, /, +, -, ;, ‘)’ }

= { ‘(‘, id, number, ciert@, fals@ }

({ ‘(‘, id, number, ciert@, fals@ }

) { *, /, +, -, ;, ‘)’ }

+ { ‘(‘, id, number }

- { ‘(‘, id, number }

* { ‘(‘, id, number }

/ { ‘(‘, id, number }

ciert@ { ;, ‘)’ }

fals@ { ;, ‘)’ }

ent { id }

dec { id }

cadena { id }

bool { id }

stmt { ‘}’, mientras, hacer, si, id, ent, dec, cadena, bool, imprimirln}

dataType { id }

decTail { ; }

expr { ;, ‘)’ }

term { +, - , ;, ‘)’ }

termTail { ;, ‘)’ }

factor { *, /, + , -, ;, ‘)’ }

factorTail { +, -, ;, ‘)’ }

addOp { ‘(‘, id, number}

multOp { ‘(‘, id, number}

!191

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

Predict

stmt → id = expr; {id}

stmt → dataType id decTail; { ent, dec, cadena, bool }

dataType → ent { ent }

dataType → dec { dec }

dataType → cadena { cadena }

dataType → bool { bool }

decTail → = expr { = }

decTail → { ; }

expr → term termTail { ‘(‘, id, number }

expr → boolOp { ciert@, fals@ }

termTail → addOp term termTail { +, - }

termTail → { ;, ‘)’ }

term → factor factorTail { ‘(‘, id, number }

factorTail → multOp factor factorTail { *, / }

factorTail → { +, -, ;, ‘)’ }

factor → (expr) { (}

factor → id { id }

factor → number { number }

addOp → + { + }

addOp → - { - }

multOp → * { * }

multOp → / { / }

boolOp → ciert@ { ciert@ }

boolOp → fals@ { fals@ }

!192

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

If Statement Sets

First

stmt { si } 4

siTail { sino }

sinoTail { ‘{‘, si }

condition { ‘(‘, id, number, ciert@, fals@ }

conditionTail { == , != , > , < , >= , <= }

compOp { == , != , > , < , >= , <= }

Follow

stmt { ‘}’, mientras, hacer, si, id, ent, dec, cadena, bool, imprimirln }

siTail { si, ‘(‘, id, number, ciert@, fals@, imprimln, ‘}’ }

sinoTail { si, ‘(‘, id, number, ciert@, fals@, imprimln, ‘}’ }

condition { ‘)’ }

conditionTail { ‘)’ }

compOp { ‘(‘, id, number, ciert@, fals@ }

Predict

stmt → si (condition) {stmtList} siTail { si }

siTail → sino sinoTail { sino }

siTail → { si, ‘(‘, id, number, ciert@, fals@, imprimln, ‘}’ }

sinoTail → {stmtList} { ‘{‘ }

sinoTail → si (condition) {stmtList} siTail { si }

condition → expr conditionTail { ‘(‘, id, number, ciert@, fals@ }

conditionTail → compOp expr { == , != , > , < , >= , <= }

conditionTail → { ‘)’ }

compOp → == { == }

compOp → != { != }

 Limited to FIRST set of if statement productions4

!193

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

compOp → < { < }

compOp → > { > }

compOp → <= {<=}

compOp → >= {>=}

While Sets

First

stmt { mientras, hacer } 5

Follow

stmt { ‘}’, mientras, hacer, si, id, ent, dec, cadena, bool, imprimirln}

Predict

stmt → mientras (condition) {stmtList} { mientras }

stmt → hacer {stmtList} mientras (condition); { hacer }

 Limited to FIRST set of while loop productions5

!194

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

Appendix B: Example Programs

EXAMPLE PROGRAM #1: HOLA MUNDO! (HELLO WORLD!)

Tango Sample Code

clase holaMundo públic@ {
func$ principal() {

#variable declaration
bool URC = ciert@;

#if statement
si (URC) {

imprimirln(“Hola Mundo! Hoy es el URC”);
}

sino {
imprimirln(“Hola Mundo! Hoy NO es el URC”);

}
}

}

Generated Java Code

public class holaMundo {
public static void main(String [] args) {

#variable declaration
Boolean URC = true;

#if statement
if (URC) {

System.out.println(“Hello World! Today is
the URC”);

} else {
System.out.println(“Hello World! Today is
NOT the URC”);

}
}

}

!195

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

EXAMPLE PROGRAM #2: JUEGO DE ADVINIVAR (GUESSING GAME)

Tango Sample Code

clase juegoDeAdivinar públic@{
func$ principal() {

ent n = 27; #hard coded number for now
ent usuario = 0;
escáner e = escáner() nuev@;

mientras (usuario != n) {
imprimirln(“Elige un número entre 1 y
100”);
usuario = e.sigEnt();

si (usuario < 1) {
imprimirln(“Su número es invalido.”);
imprimirln(“Elige un número entre 1 y
100”);

} sino si(usuario > 100) {
imprimirln(“Su número es invalid.”);
imprimirln(“Elige un número entre 1 y
100”);

} sino si(usuario > n) {
imprimirln(“Que boludo...demasiado
alto!”);

} sino si(usuario < n) {
imprimirln(“Que idiota...demasiado
bajo!”);

} sino { #usuario == n
imprimirln(“Perfecto! Está
correcto!”);

}
}
imprimirln(“Gracias por jugar!”);

}
}

!196

BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 3

Generated Code

import java.util.Scanner;

public class juegoDeAdvinar {
public static void main(String [] args) {

int n = 27; //hard coded number for now
int user = 0;
Scanner e = new Scanner(System.in);

while (user != n) {
System.out.println(“Choose a number b/w 1 &
100”);
user = e.nextInt();
if(user < 1) {

System.out.println(“Your number is
invalid”);
System.out.println(“Choose number b/w
1 & 100”);

} else if (user > 100) {
System.out.println(“Your number is
invalid”);
System.out.println(“Choose number b/w
1 & 100”);

} else if (user > n) {
System.out.println(“Too High!”);

} else if (user > n) {
System.out.println(“Too Low!”);

} else { //user == n
System.out.println(“Perfect! You got
it right!”);

}
}
System.out.println(“Thanks for playing!”);

}
}

Appendix C: Source Code

See the full source code repository via the online resource GitHub: https://
github.com/ashleyzeg/HonorsThesis.

!197

https://github.com/ashleyzeg/HonorsThesis
https://github.com/ashleyzeg/HonorsThesis

	Tango: A Spanish-Based Programming Language
	Recommended Citation

	Tango: A Spanish-Based Programming Language
	Cover Page Footnote

	BJUR_03_10

