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Introduction 

The goal of this work is to make a methodological contribution to the study of 
higher education. The Random Forest (RF) algorithm has proven useful in many 
fields   due to its efficiency and accuracy in making predictions with large datasets 
(Breiman, 2002). Within the field of education, researchers are increasingly 
interested in the applications of large-scale, complex information systems (Daniel, 
2015). As higher education data become more readily available, machine learning 
techniques such as RF have the potential to improve our understanding of student 
enrollment and success. For these reasons, RF is tested against more traditional 
models, using a state-wide longitudinal dataset. In order to contribute to the existing 
knowledge-base of higher education research in the United States in general and in 
Utah in particular, the methodological contributions of this work are grounded 
within a substantive context. This means that statistical techniques are discussed 
within the framework of critical quantitative scholarship, with the explicit motive 
of improving race, class, and gender equity in pathways to higher education. The 
results and implications of this work should be widely accessible for audiences with 
statistical, educational, or sociological interests. 

Access to postsecondary education is an area of great import, due to the 
abundance of individual and societal benefits that accompany higher education. In 
addition to increased civic engagement and health, higher education spurs 
productivity and opens access to economic mobility (Perna and Swail, 2001). In 
2014, those with Bachelor’s degrees earned 66% more than those with High School 
diplomas. For each subsequent education level, median incomes increased 
significantly (Kena et al., 2016). This is particularly meaningful in the context of 
social mobility because students from low and high income families who attend the 
same university have similar economic outcomes (Turner and Treasury, 2017). As 
a result, those who study education are becoming increasingly interested in access 
to postsecondary institutions.  
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While a college education is increasingly important in the global 
marketplace, state policies and practices are often ineffective at– and in fact 
discriminatory in – funneling well-qualified students into higher education (Kirst 
and Venezia, 2004). In order to improve the design of higher education access, it is 
crucial to dissect and critique the existing process. The following section will 
outline the racial, economic, and gender nuances of Utah’s higher education 
pipeline, in addition to reviewing national trends and common metrics for student 
success. The Introduction continues by situating the discussion within the critical 
quantitative framework, pointing out research gaps, and finally addressing the 
expected research contribution. 

Race, Class, and Gender Context 

Two relentless threats to equity in the U.S. education system are structural racism 
and class discrimination. The re-segregation of Black and Latinx public school 
students, combined with the lack of resources in high-poverty, high-racial minority 
school districts, has contributed to unyielding achievement gaps (Wald and Losen, 
2003). Racial segregation is tied to the black-white achievement gap for a variety 
of reasons, most notably the disparity in poverty rates between black students’ and 
white students’ schools (Reardon, 2016). Nationally, Black students reside in 
classrooms where 64% of their classmates are low-income (Frankenberg and 
Orfield, 2012). Race and class inequities such as unequal access; 
underrepresentation in Science, Technology, Engineering and Mathematics 
(STEM) fields (which tend to be the most lucrative); dissimilar retention efforts; 
and disparate degree attainment continue to plague the mission of higher education 
(Bensimon and Bishop, 2012). Race gaps in educational opportunity are 
detrimental not only to students, but to society at large: inferior higher education 
and STEM pipelines for underrepresented minority (URM) students inevitably hurt 
U.S. competitiveness in a global market. This problem has been exacerbated by the 
growing populations of Non-White U.S. citizens (Hurtado, 2007; Chambers, 2009), 
for despite significant increases in the population of URM citizens, racial diversity 
at selective, public universities has declined (Garces and Cogburn, 2015). While 
advances in representation have been made, racial disparities continue to stymie 
equity in higher education. 

Economic barriers to postsecondary education also diminish the integrity of 
education pipelines. Students whose parents are in the top 1% of the income 
distribution are roughly 77 times more likely than students whose parents are in the 
bottom quintile of the income distribution to attend an Ivy League institution 
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(Chetty et al., 2017). Students from low income families are underrepresented in 
every section of the education pipeline, and income disparities increase with each 
subsequent education level after high school (Jacobson and Mokher, 2009). Even 
controlling for student ability and familial background, neighborhood effects 
further contribute to students’ educational attainment (Garner and Raudenbush, 
1991). Lack of financial information often contributes to depressed college 
enrollment for well-qualified low-income students (Kelchen & Goldrick-Rab, 
2015). These gaps are striking in the college application process: Hoxby and Avery 
(2012) estimate that while high-achieving, high-income students outnumber high-
achieving low-income students 2:1 in the general population, the high-income high 
achievers outnumber their low-income counterparts 15:1 in college applications to 
selective institutions. In addition to the financial barriers, students from low income 
families and communities often experience education pipelines and information 
networks not structured to maximize their academic potential. 

Gender barriers in postsecondary education are nuanced: women fare well 
in terms of access to higher education, but often do not achieve similar outcomes. 
Nationally, women obtain degrees at higher rates than men. In 2015, half of women 
aged 25-29and 41% of men aged 25-29 had completed an Associate’s degree or 
higher, while 39% of women and 32% of men had completed a Bachelor’s degree 
or higher (Kena et al., 2016). However, higher degrees do not translate into similar 
levels of success across genders. This problem is exaggerated in Utah, where 
female graduates are dramatically undervalued in the workplace: When compared 
to similarly qualified individuals, women earn 97% of what men earn nationally, 
and only 86% of what men earn in Utah. Interestingly, inequality due to different    
endowments - the gender discrepancy in wages due to measurable education and 
career differences -is increasing (Miller, 2016). Within the heavily Mormon 
religious environment of Utah, higher education is deemed by some scholars as a 
form of embedded resistance for Latter Day Saints (LDS) women to negotiate the 
patriarchal hegemony (Mihelich and Storrs, 2003). Nevertheless, while women are 
attaining higher education at historic rates, Utah’s pipelines are fraught with 
inequities that detract from higher education’s mission of equal opportunity. 

Finally, the influence of tools for measuring academic achievement cannot 
be over- stated. Although many admissions offices weight the two similarly, High 
School GPA typically predicts first year college GPA more accurately than 
standardized test scores (Sawyer, 2013). In addition to being a better predictor of 
initial student success, High School GPA has been shown to contain less bias 
against URM students than standardized test scores. In fact, when race and class 
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are ignored in post-secondary GPA predictive models, their effects are often 
absorbed into the standardized test component, calling into question the validity of 
such universal standards (Geiser and Santelices, 2007). Critics of standardized tests 
claim that test scores reflect Socio-Economic Status (SES) rather than ability, but 
there does seem to be a strong association between test scores and academic 
potential. In fact, test scores may predict success at more selective institutions with 
greater accuracy than High School GPA (Sawyer, 2013; Noble and Sawyer, 2004). 
When accounting for SES, test scores still are able to explain approximately 1

5
 of 

the variation in postsecondary grades (Sackett et al., 2009). Goals of this work 
include interrogating the utility and effectiveness of High School GPA, ACT 
scores, and AP scores in predicting postsecondary GPA. Additionally, this work 
seeks to critique the process via which demographic inequities may be reified by 
each assessment tool. 

Critical Quantitative Framework 

This work seeks to contribute to the field of critical quantitative inquiry in higher 
education. A critical perspective advances higher education research by countering 
false narratives, challenging previous work, and presenting alternative lenses (or 
methods). Originating from scholars of the Frankfurt School, critical theory focuses 
on identifying latent power structures and oppressions, and often manifests itself in 
efforts to change existing hierarchies. The work of critical theorists includes 
changing the methods used to interpret society as well as changing society itself 
(Kincheloe, McLaren, and Steinberg, 2012).This section defines the quantitative 
critical research model and points to the relevance of critical work for this 
manuscript. 

Critical education theory has previously been associated with qualitative 
studies, which typically focus on presenting alternative social narratives in order to 
center the experience of marginalized individuals (Stage, 2007). The most 
important stage of the critical research process is widely considered the 
interpretation of results; critical scholars often reject notions of objectivity in 
research (Kincheloe and McLaren, 2002). Many qualitative critical theorists view 
quantitative work as reductive in nature (Stage, 2007). However, these critics may 
underestimate the importance of interpretation around statistical results. 
Statisticians often caution that their methods are not representations of objective 
reality, but rather a lens through which one can view data. Leo Brieman and Adele 
Cutler, the authors of the RF algorithm, the primary tool of analysis used in this 
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project, offer the following warning for consumers looking for objectivity in RF 
results: 

RF is an example of a tool that is useful in doing analyses of 
scientific data. But the cleverest algorithms are no substitute for 
human intelligence and knowledge of the data in the problem. Take 
the output of random forests not as absolute truth, but as smart 
computer generated guesses that may be helpful in leading to a 
deeper understanding of the problem. 

By providing novel insights through careful analysis rather than seeking objective 
measures of truth, critical quantitative theorists can add value to current education 
research. Critical approaches advance the field of education studies by measuring 
inequities and challenging oppressive narratives which rely on false objectivities. 
Thus, the quantitative critical theorist will (1) investigate equity of the educational 
world using data and (2) interrogate the usage of current empirical models in 
educational studies, in an effort to better represent marginalized groups (Stage, 
2007). Advances in statistical algorithms (such as RF) are becoming useful for the 
quantitative critical scholar. The goals of the quantitative critical theorist, namely 
documenting inequities and challenging methods for representing those inequities, 
are increasingly viable due to surges in information and advances in statistical 
methodology. 

Research Gaps 

Previous researchers have used techniques such as Hierarchical Generalized Lin- 
ear Modeling or Multi-level Modeling (Hurtado, 2007; Raudenbush and Bryk, 
2002; You and Nguyen, 2012), Structural Equation Modeling (Zajacova, Lynch, 
and Es- penshade, 2005), Network Analysis (Gerber and Schaefer, 2004), and Data 
Mining (Slater et al., 2017) to measure educational access and success. A small 
number of studies have used RF to predict students outcomes in Spanish, Brazilian, 
British, and Portuguese education systems (Blanch and Aluja, 2013; Cortez and 
Silva, 2008; Golino and Gomes, 2014; Hardman, Paucar-Caceres, and Fielding, 
2013; Golino, Gomes, and Andrade, 2014). However, there is a lack of research 
examining the U.S. postsecondary system with machine learning techniques such 
as RF. Top journals such as Sociology of Education and The Journal of Educational 
and Behavioral Statistics have yet to publish studies using RF to describe inequality 
in higher education. 
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Location is an important factor in the progression to higher education 
(Turley, 2009). Topics such as racial, gender, and economic inequality in 
postsecondary education have not been thoroughly investigated for their influence 
in this process as well, and there is little research on the confluence of such factors 
in the state of Utah, where cultural processes such as the LDS mission disrupt 
traditional high school- to-college pipelines. Additionally, there is little quantitative 
work around higher education and gender in LDS environments, although the 
existing qualitative work suggests that higher education is a form of resistance for 
some Mormon women (Mihelich and Storrs, 2003). Simply put, Utah’s unique 
religious and gender context contributes to college-going in multifarious ways, 
raising important questions of demographic access and equity. The aforementioned 
traits also make Utah an interesting environment to test novel methods with 
complex data. 

Lastly, the relevance of machine learning in the canon of critical 
quantitative studies in higher education remains unexplored. The RF framework 
aligns well with the critical quantitative model of inquiry, which seeks to 
interrogate both substantive and methodological assumptions. The RF model 
subverts notions of linearity in effects, allowing for new interpretations of 
demographic relationships. Both critical scholarship and RF research depend 
heavily on the interpretation of results. This work challenges assertions that 
quantitative work is reductive in nature, instead pointing toward similarities in 
quantitative and critical work, and exemplifying critical interpretations of RF 
analyses. While there is a growing body of critical quantitative higher education 
research, and RF is an established method in machine learning, the author is 
unaware of any previous work that synthesizes these two approaches. 

Research Contribution 

The goal of this work is to explore the RF algorithm as a method for making pre- 
dictions in higher education. In this work, methods are tested within the context of 
race, class, and gender inequalities in higher education. Substantively, this work 
will further current knowledge on access to postsecondary education systems, with 
a focus on demographic inequities in the state of Utah. Methodologically, this work 
compares three quantitative models according to their efficacy in predicting student 
success. Results are interpreted through a quantitative critical lens. This work adds 
to a growing body of quantitative research on higher education access. As a non-
linear, decision-tree-based, ensemble predictor, the RF model is structurally 
dissimilar from common prediction models, and offers some unique advantages. 
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Instead of using distance on an n-dimensional plane to maximize predictive 
efficacy, RF agglomerates large amounts of split-points. In each tree, a random 
subset of variables are used to make decisions, allowing the RF algorithm to capture 
some of the nuances of variable relationships. RF models have proven to be optimal 
predictors in a wide range of fields such as finance, biology, and chemistry. Given 
the accuracy, precision, simplicity and benefits of the RF model (Hastie, Tibshirani, 
and Friedman, 2001), the lack of studies using RF as a tool to predict student 
success in the U.S. higher education system is surprising. 

Following Frances Stage’s model of critical quantitative inquiry, the goals 
of this work are to interrogate both the equity of Utah’s education pathways and the 
methods which are generally used to study higher education pathways. The present 
research attempts to answer the following questions: 

(1) What inequities in access to higher education for Utah high school 
students are shown by Random Forest, logistic, and linear models? 

(2) Can Random Forest predict student access success in higher 
education more accurately than logistic or linear estimators? 

(3) How can the Random Forest algorithm advance quantitative critical 
higher education scholarship? 

This paper is structured in the following manner: data organization, 
cleaning, and imputations are covered in Section 2. RF, linear, and logistic models 
are described in section 3. Research questions (1) and (2), which focus on 
substantial and methodological conclusions, respectively, are covered in Section 4. 
This work finds that the RF algorithm outperformed the logistic model, performed 
similarly to linear models, and in some cases offered a more complete 
understanding of student variables than other models. Finally, Section 5 answers 
research question (3), focusing on the broader importance of quantitative education 
studies. RF is considered useful in quantitative critical higher education research 
because it provides novel interpretations of data, allows for challenges to previous 
models, and can be used to advance equity. 

Data 

Source, Structure 

Data were obtained from the Utah System of Higher Education, and include in- 
formation on 43,947 students from the 2008 cohort of Utah high school graduates. 
Every student who was recorded in a Utah high school as part of this cohort was 
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included, regardless of actual high school graduation status. Demographic 
information such as school district, school, gender, race, low income status, 
mobility, English learner status, migrant status, and special education status was 
included. Gender was denoted as binary (male/female). Race was divided into ten 
categories: Caucasian, White not of Hispanic Origin, Black, Asian, Hispanic or 
Latino, American Indian, Pacific Islander, Multiple Race, and missing. This work 
is limited by the fact that gender and race categories available are not exhaustive, 
and do not represent every identity of interest. Low income status was indicated for 
students who qualify for the National School Lunch Program (free or reduced price 
lunch) or who have been identified as economically disadvantaged on another 
measure during their final year of high school enrollment. Mobile status was 
indicated if a student did not attend the same high school for the entirety of that 
student’s final year of enrollment. Migrant status was indicated if the student has 
been identified as the child of migratory agricultural workers. Special Education 
status was indicated if students participated in special education during their final 
year of high school. The English Language Learner variable indicates whether a 
student participated in a Limited English Program during their final year of high 
school. Student achievement information such as Advanced Placement (AP) test 
scores, ACT test scores, High School GPA, and High School college enrollment 
was included. ACT test scores are disaggregated by Reading, English, 
Mathematics, Science and Composite results. Postsecondary information such as 
Pell Grant eligibility, Pell Grant reception, postsecondary GPA, semester start date, 
and Classification of Instructional Program (CIP) were also provided for each 
semester a student was enrolled in an institution of higher education. 

Data were received from the Utah Data Alliance, through the National 
Student Clearinghouse, in four sets, with rows corresponding to student ID, 
semester, degree, and standardized test result, respectively. In order to test the 
variety of relationships between student variables provided, data were merged such 
that each row pertained to one of the 41,303 students. This merged dataset included 
186 variables, many of which were ultimately not pertinent to the research question. 
In figure 1, one can see a visual representation of the data used to measure college 
pathways. The complexity of using pathways to describe college access is readily 
ascertained, as many students attend college at different times, take breaks, and 
graduate on different schedules. For this reason, students may be counted in 
multiple stages of the pathways. Even so, there is a basic structure to the institutions 
and opportunities that accessible to students. 

 



BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 4 
 

149 
 
 
 
 

Variables Created 

Many variables were created in order to summarize the students’ higher education 
experiences. A URM indicator was created based on whether students’ race was 
one of the following categories: Caucasian, White not of Hispanic origin, or Asian, 
based on previous research on URM students (Hurtado et al., 2009). Semester start 
dates were sorted from oldest to newest, and Cumulative GPA was created using 
the most recent GPA result from a student’s postsecondary career. Earliest 
Enrollment was created using the year that each student first enrolled in 
postsecondary classes. College Semesters in High School was created using the 
number of postsecondary-level courses that the student took prior to High School 
graduation. Two college enrollment variables were generated based on the 28,878 
unique Person ID values which had college enrollment data: College in High 
School, indicating whether students had taken postsecondary courses prior to 
Summer 2008, and College Attainment, indicating whether students had attained 
college after Spring 2008. 

 

 
Figure 1. A summary of pathways to higher education for students in the state of 
Utah; the number of students enrolled in various institutions is indicated (students 
may transfer, and thus be counted in multiple institutions). 

 

Classification of Instructional Programs (CIP) codes were used to identify 
STEM majors, based on the U.S. Immigrations and Customs Enforcement STEM-
Designated Degree Program List 2012. STEM students were identified based on 
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the National Center for Education Statistics definition of STEM students, which 
includes any student who has participated in at least one semester of a STEM major 
(Chen and Weko, 2009). STEM status was indicated if a student had participated 
in a STEM major. The creation of STEM status and other variables allowed the 
researcher to summarize meaningful student information so that it could be 
incorporated in predictive models. 

Missing Data 

Missing data is a common problem in education studies. Many items in the present 
dataset were missing, such as district, school, gender, race, low income status, 
mobile status, High School GPA, ACT scores, and Pell Grant eligibility. 
Observations which were missing information for district, school, gender, race, 
migrant status, mobile status, English learner status, and Special Education status 
(n = 2644) were removed using listwise deletion. This technique refers to the 
removal of entire rows of data with missing values. Although listwise deletion is 
typically not recommended in the case of missing data, there was little advantage 
in keeping cases which had no demographic information. Additionally, cases in 
which the individual had no High School GPA (n = 56) were removed using listwise 
deletion. Because n is small, in this case 0.15% of the data, such removal is not 
problematic. 

 

 
Table 1. Students without ACT scores are academically different than those with 
ACT scores. 

 

Many students (44.3% of the 28,878 students who had a record of higher 
education) were missing ACT scores, likely because they did not take the test. Test 
scores can be an important predictor of academic success, and in order to utilize 
this predictor without removing large amounts of data, estimation of missing data 
was necessary. There is reason to believe that ACT test scores are not missing at 
random (MAR): students who do not have ACT scores exhibit notable academic 
differences from their peers. Thus missing data are classified as nonignorable, as 
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the probability of missing data may depend on the value of the data. In Table 1, one 
can observe that mean High School GPA for the students who have ACT scores 
recorded is 3.39, while the mean High School GPA for students who do not have 
ACT scores is 2.41. It is assumed that any differences in academic fortitude that 
may change the probability of missing ACT scores can be attributed to changes in 
GPA and other High School achievement variables. This allows the researcher to 
proceed with imputation. 

Multiple Imputation 

Multiple Imputation (MI) was performed using the Amelia package in R to estimate 
ACT scores and Pell Grant status. One of the assumptions of MI is that the data 
follow a multivariate normal distribution. If X is an nxq matrix with missing and 
observed portions, and θ = (µ, Σ) are mean and covariance parameters, then: 

(2.1)  

Although this method works best with multivariate data, MI can also work well 
with non–normal data (Allison, 2001). The multivariate assumption tends to 
perform fairly well compared to more complex models, even when data follow 
other distributions. 

Another assumption for MI is that the data are MAR. In this case, it is 
assumed that the missing status of ACT and Pell Grant Status Variables are 
dependent on other observed data, such as High School GPA and demographic 
indicators. Given that M indicates the missing data and Xobs are observed data: 

(2.2)  

After using the Law of Iterated Expectations, and assuming a flat prior on 
θ, we arrive at the following, where Xmis are the actual missing data values. 

 

(2.3)  

 

The Expectation–Maximization (EM) algorithm has been used in previous 
education studies to estimate missing values (Hurtado et al., 2008). The Amelia 
package uses EM in combination with bootstrapping in order to find the mode of 
(2.3) and estimate θ. Then Xmis is predicted based on Xobs and θ using a linear 
regression. (For more on Amelia MI specifications, see Honaker, King, and 
Blackwell, 2011). 
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The Amelia algorithm was specified such that the range of ACT scores is 
restricted to 0–36, and the range of Pell Grant statuses is restricted to 0–1. The 
algorithm achieves this by discarding any estimated values that appear outside of 
these ranges. Because the estimated parameters of ACT scores and Pell Grant 
eligibility are discrete, the estimated values were rounded to the nearest integer. 
The imputations were performed five times. MI estimations generally become more 
accurate after each iteration is performed (Allison, 2001), so the fifth imputation 
was used in order to replace missing data. 

Methods 

Random Forest Background 

A myriad of measures related to postsecondary access and success are common in 
education literature, and still many institutions are unaware of the variables that 
best predict student progress. While many methods have been used to represent 
student progression in higher education, a growing body of research seeks to under- 
stand this process through large datasets of interrelated variables. RF algorithms 
are increasingly popular in the prediction of student achievement due to their 
accuracy and fluency in analyzing large amounts of information (Blanch and Aluja, 
2013; Cortez and Silva, 2008; Golino and Gomes, 2014; Hardman, Paucar-Caceres, 
and Fielding, 2013). Hardman and Paucar-Caceres used RF in order to predict a 
student’s progression in higher education, evaluating indicators for success in a 
virtual learning environment. RF was promoted for its utility in higher education 
research in this study due to its efficacy with large datasets (2013). Golino, Gomes, 
and Andrade (2014) state that RF is of particular interest to the field of educational 
research due to its ability to identify predictive variables and address the non-
linearity in predictive power of individual variables, referring to the partial plot 
feature of RF. In Golino, Gomes and Andrade’s (2014) study predicting the 
academic success of high school students, RF is commended due to its fluency and 
lack of assumptions (such as normality, collinearity, homoscedasticity, 
independence between variables). Additionally, Hardman, Paucar-Caceres, 
Urquhart, and Fielding use RF to make two contributions to the study of 
information systems in higher education: (1) defining key variables for university 
student progression in a VLE and (2) introducing RF as an optimal method for 
analyzing such information (2010). Variable importance and partial plots are used 
in order to distinguish critical variables for advancement in the VLE, such as usage 
time and staff page visits. Of the aforementioned works using RF, all evaluate 
educational systems outside the United States, and none use RF to critically 
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interrogate demographic influence. Therefore, the RF model remains relatively 
unexplored as a tool for describing equity in higher education in the United States. 

RF is a powerful prediction tool in fields outside of education. In terms of 
accuracy, Leo Breiman and Adele Cutler state that the RF algorithm is unexcelled 
by other modern algorithms (2001). The algorithm does remarkably well in 
prediction, even without much tuning (Hastie, Tibshirani, and Friedman, 2001). In 
addition to accuracy, Classification and Regression Trees (CART) such as RF are 
optimal estimators due to their intuitiveness, fluency and ease of use (Golino and 
Gomes, 2014). Although RF algorithms were developed in statistics (Breiman et 
al., 1984) and machine learning (Quinlan, 1993), RF methods have been used 
effectively to make predictions in a wide range of fields, including systems biology 
(Geurts, Irrthum, and Wehenkel, 2009), molecular biology (Guerts, Irrthum, & 
Wehenkel, 2009), ADHD diagnosis (Skogli et al., 2013), medicinal chemistry 
(Naeem, Hylands, and Barlow, 2012), and finance (Khaidem, Saha, and Dey, 
2016). In an influential study of cheminformatics, Svetnik et al. show that RF is 
among the most accurate predictors available, lauding its features of built-in 
performance assessment and relative importance measures (2003). A seminal work 
in gene selection used RF due to its ability to predict despite many variables being 
noisy (Díaz-Uriarte and De Andres, 2006). Many researchers have used RF 
algorithms in order to predict credit risk, a field in which misclassification can be 
costly (Brown and Mues, 2012; Iturriaga and Sanz, 2015; Wang et al., 2011). The 
use of Random Forest algorithms in diverse and complex fields illustrates the power 
and utility of the algorithm. 
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Figure 2. A decision tree using ACT Score, early college attendance, school low-
income proportion and Pell eligibility to predict postsecondary enrollment. In the 
rightmost branches of the tree, 1 refers to a prediction of postsecondary enrollment, 
whereas 0 refers to a prediction of no enrollment. 

 

The RF regression is an ensemble learning algorithm, similar to methods 
such as bagging and boosting. Each type of ensemble learning can be used in 
prediction, involving the aggregation of individual learners (such as trees). The RF 
model uses random samples of predictor variables to generate many individual 
decision trees (forests) that are aggregated in order to make a single estimation. 
While boosting typically dominates bagging, RF performs similarly to boosting and 
is easier to adjust (Hastie, Tibshirani, and Friedman, 2001). The forest can make 
estimations for nominal variables (regressions) and continuous variables 
(classifications). For regression problems, the algorithm uses the average of 
individual trees; for classification problems, a weighted vote of the decision trees 
is used (Breiman, 2001). Aggregating over many trees has been shown to produce 
accurate predictions for large and complex data (Hastie, Tibshirani, and Friedman, 
2001). The RF model is ideal for college access data because it performs well with 
large datasets and has robust algorithms for dealing with missing values (Hardman, 
Paucar-Caceres, and Fielding, 2013). In addition to its fluency, RF is able to 
identify the predictive power of variables, and can be used to return decision trees 
with split points. 
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The method for obtaining a random forest predictor is as follows: 

(1) Take K bootstrap samples from the training data. 
(2) For each bootstrap sample, grow a random forest tree: 

(a) Select mtry variables at random. 
(b) Pick the best variable/split point among the mtry variables. 
(c) Split the node into two daughter nodes. 

(3) Repeat step 2 until minimum node size nmin is reached 
(4) Predict new data by aggregating predictions from sample trees 

 

Let an ensemble of K trees be represented as  . For a point x, a new 
prediction is generated as follows: 

 
In this work, student outcomes are predicted with an RF decision tree 

algorithm generated by the Random Forest package using R statistical software 
(Liaw and Wiener, 2002a). 

Tuning 

Although the RF algorithm is known for creating accurate predictions without much 
tuning, and many researchers adhere to the default settings, some education studies 
have used larger K values for prediction. In their estimation of secondary student 
performance, Cortez and Silva (2008) compare several Data Mining methods, 
including RF, which is specified to its default parameters. In Cortez and Silva’s 
study, K = 1, 000 was used in computing variable importance. Golino, Gomes and 
Andrade (2014), who also use the random Forest R package, set mtry to the default 
value, but increase K to 10,000. Superby and Meskins (2006), also using R, opt for 
K = 800 trees in their RF analysis of final year achievement in Belgian universities. 
While K = 500 is generally an ample number of trees for prediction purposes, more 
trees can provide more stable variable importance scores (Breiman and Cutler, 
2014). Even so, variable importance rankings are found to be similar despite 
volatile importance scores (Liaw and Wiener, 2012). In this work K = 500 is used 
for all RF analysis. Figure 3 shows that errors stabilize after 250 trees, so the default 
setting of K = 500 is considered ad- equate. Additionally, the default value for mtry, 
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𝑝𝑝
3

= 22
3

= 7 is used for the number of variables to try at each split point. While 
tuning of K and mtry values was considered, ultimately the default settings were 
considered adequate for the purposes of this work. 

RF Variable Importance, Partial Plots 

The RF algorithm can be used evaluate variable importance, a measure of the 
influence of a particular variable on outcomes of prediction trees. Variable 
importance is a measure of the increase in Out of Bag (OOB) error, with a 
permutation of the variable of interest (Liaw and Wiener, 2002b). The OOB error 
refers to the error of the trees which do not include the variable of interest as a 
predictor. (Recall that because mtry is roughly 1

3
 the total number of predictive 

variables, roughly 2
3
 of the trees generated will not include the variable of interest). 

The partial plot provides a powerful visual representation of the marginal 
effect a predictor has on the response variable. It allows the researcher to isolate 
one real-valued variable x and view its partial dependence,     . . Partial plots are 
obtained using the average values for all other variables, xiC in order to measure the 
change in prediction that occurs when the variable of interest, x, is manipulated 
(Liaw and Wiener, 2012). While the shape of the partial plots and relative scale of 
the vertical axis are important, the vertical axis values are not meaningful, as results 
represent change after integration over all other variables (Liaw, 2009). For 
regression, the change in prediction is measured with the following formula: 

 

(3.2)  

 

where x is the variable of interest, and xC is simply the complement of x, such that 
x∪xC = X, or every variable in the model (Hastie, Tibshirani, and Friedman, 2001). 

Linear Models 

Two linear models are used to estimate student success in higher education. The 
Ordinary Least Squares (OLS) regression method is a common tool in educational 
and sociological multivariate analysis (Dismuke and Lindrooth, 2006). OLS is a 
linear estimator that minimizes squared residuals in order to estimate new data. The 
OLS regression is denoted: 
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(3.3)  

 

such that β are coefficients, Xj represent individual student variables, and ∈𝑖𝑖𝑖𝑖 are 
error terms. 

The OLS model does not control for groupings in data, such as districts or 
schools, which have been shown to significantly influence a child’s educational 
trajectory (Burtless, 2011). The Hierarchical Linear Model (HLM) adds new levels 
of analysis to the linear regression. In this model, coefficients estimated at one level 
become out- comes at the next level (Raudenbush and Bryk, 1986). The multi-level 
nature of this model allows one to nest students within schools, and schools within 
districts. This is helpful in separating the effects of individual characteristics and 
group characteristics. The nlme package in R was used to perform analysis, using 
Random Effects (RE) for district- and school-level characteristics and Fixed Effects 
(FE) for individual-level characteristics. The RE model allows for the estimation of 
the effects of group-level characteristics, such as racial and socioeconomic 
composition, and thus is quite popular in the social sciences for measuring higher-
order effects. The FE model is based on the assumption that one true effect exists 
across studies, and thus do not estimate the sampling error variance. Therefore, FE 
models cannot suffer from heterogeneity bias, and are often used in econometrics 
to control for individual-level qualities (Bell and Jones, 2015; Snijders and Bosker, 
1999). To account for high school-level differences in post-secondary retention and 
success, a random-intercept model is used where i are students, j are schools, and k 
are districts. The within-group error,  ∈𝑖𝑖𝑖𝑖𝑖𝑖,  between-school error  𝓇𝓇𝑝𝑝𝑖𝑖𝑖𝑖,  and 
between-district error  𝓊𝓊𝑝𝑝𝑝𝑝𝑖𝑖,  are assumed to be normal such that: 
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W and V represent school- and district-level predictors, respectively (Steiger, 2009). 

Logistic Model 

The Logistic model is often used to estimate binary outcomes. The Logistic 
Regression assumes that the binary outcome variable follow a binomial 
distribution, and can be modeled as a function of the independent variables. The 
variance of this distribution changes as a result of the observation (Cabrera, 1994). 
The Logistic model is presented in probabilities, in order to interpret the effect of 
independent predictor variables on a binary outcome: 

(3.7)  

The variance, 𝜎𝜎𝑖𝑖2,  can also be understood probabilistically:  

(3.8)  

The intercepts and coefficients are estimated by Maximum Likelihood (ML) 
estimation, which minimizes the error using prior distributions of these variables 
(Cabrera, 1994). Thus, the predicted probability can be calculated as follows: 

 

(3.9)  
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In this case, a logistic model is used to predict college attainment. Yi represents a 
student’s success (1) or failure (0) to enroll in postsecondary education after Spring 
2008. The model is performed using the glm package in R. 

Results 

In order to assess the accuracy of predictive models, it is appropriate to split data 
into training and test sets (Breiman, 2001). For the purposes of this study, a random 
sample of 3,740 data points (10% of viable observations) were selected as test data, 
and the remainder of the data were used as the training set. After using the training 
data to specify each model, test set values were predicted. Comparisons between 
methods are based on the accuracy of predictions for the test data. The tables and 
figures in this section present the results of linear, logistic, and RF predictions. 

It is difficult to directly compare the results of linear and RF regression 
models. In order to do so, a variety of measures were invoked to gauge the 
predictive qualities of each. Tables 2 and 4 display the results of OLS and HLM 
prediction of student success (GPA). The six number summaries (Tables 3 and 5) 
capture the accuracy of the linear and RF models, depicting measures of centrality 
and ranges for each model’s estimated values and error terms. Figure 3 represents 
the success of the RF model in predicting GPA (the average error as trees increase), 
as well as the importance of each variable to the predictive trees. Figure 4 expands 
our understanding of each variable’s predictive utility by showing the relationships 
between value and importance. Figure 5 adds visual context to the six number 
summaries, presenting a histogram and a density plot of the linear and RF error 
terms. In figure 6, predicted GPA is mapped onto actual GPA, displaying the 
variation in predictions for each model. The comparison of enrollment predictors 
was much more straightforward. Confusion matrices, displaying the number of 
correct and incorrect classifications, are used in figure 6 to compare the Logistic 
model and RF model. 

 

Variable Coef. Std. Err t p> |t| 
(Intercept)∗∗∗ 0.997 0.039 25.863 0.000 
Female∗∗ 0.029 0.012 2.474 0.013 
High School GPA∗∗∗  0.489 0.011 45.594 0.000 
Low Income∗∗∗  -0.074 0.016 -4.511 0.000 
Migrant∗ 0.513 0.294 1.742 0.081 
Special Education -0.035 0.031 -1.115 0.265 
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Mobile∗∗∗ 0.039 0.014 2.797 0.005 
Limited English -0.011 0.057 -0.194 0.846 
Attend College HS∗∗∗  0.036 0.003 11.228 0.000 
Pell Eligible 0.048 0.040 1.191 0.234 
Pell Grant∗∗∗  0.113 0.041 2.775 0.006 
AP Scores > 3∗∗∗ 0.057 0.005 10.761 0.000 
URM∗∗ -0.051 0.020 -2.588 0.010 
ACT Read -0.004 0.004 -0.971 0.332 
ACT Math∗∗ 0.010 0.004 2.373 0.018 
ACT English 0.006 0.004 1.389 0.165 
ACT Science -0.003 0.004 -0.653 0.514 
ACT Composite 0.004 0.016 0.250 0.803 
STEM∗∗∗ -0.078 0.015 -5.180 0.000 
Low Income District 

∗∗∗ 
-0.916 0.127 -7.211 0.000 

Low Income School Mean -0.003 0.117 -0.022 0.983 
URM District Mean ∗∗∗ 1.038 0.138 7.506 0.000 
URM School Mean -0.012 0.121 -0.101 0.919 

Table 2. Coefficients for OLS estimation of Postsecondary GPA *=significant at α 
= 0.1, **=significant at α = 0.05,***=significant at α = 0.01 

 

Six Number Summaries: GPA Estimation 
 Min 1st Quartile Median Mean 3rd Quartile Max 

Actual Data 0.029 2.550 3.133 2.952 3.570 4.000 
Random Forest 1.115 2.573 2.884 2.921 3.280 3.961 
Linear Model 1.346 2.672 2.974 2.933 3.233 4.181 

Hierarchical Linear 
Model 

1.228 2.656 2.979 2.930 3.251 4.274 

Table 3. The RF estimator outperforms OLS and HLM models in all prediction 
metrics except mean and median. 

 

Variable Coef. Std. Err DF t p> |t| 
(Intercept)∗∗∗ 0.963 0.096 18106 10.055 0.000 
Female 0.013 0.012 18106 1.146 0.251 
High School GPA∗∗∗  0.556 0.011 18106 48.717 0.000 
Low Income∗∗∗  -0.069 0.016 18106 -4.274 0.000 
Migrant∗ 0.560 0.290 18106 1.930 0.054 
Special Education -0.025 0.031 18106 -0.806 0.420 
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Mobile 0.018 0.016 18106 1.160 0.246 
Limited English -0.044 0.056 18106 -0.791 0.429 
Attend College HS∗∗∗  0.030 0.004 18106 8.669 0.000 
Pell Eligible 0.018 0.040 18106 0.473 0.636 
Pell Grant∗∗∗  0.149 0.041 18106 3.638 0.000 
AP Scores > 3∗∗∗ 0.054 0.005 18106 10.109 0.000 
URM -0.031 0.019 18106 -1.591 0.112 
ACT Read -0.003 0.004 18106 -0.758 0.448 
ACT Math∗∗ 0.008 0.004 18106 1.971 0.049 
ACT English 0.007 0.004 18106 1.578 0.115 
ACT Science -0.002 0.004 18106 -0.473 0.637 
ACT Composite 0.001 0.015 18106 0.038 0.970 
STEM∗∗∗ -0.073 0.015 18106 -4.894 0.000 
Low Income District Mean ∗ -0.697 0.398 52 -1.752 0.086 
Low Income School Mean∗  -0.339 0.180 103 -1.877 0.063 
URM District Mean 0.334 0.445 52 0.750 0.457 
URM School Mean∗  0.331 0.199 103 1.665 0.099 

Table 4. Coefficients for HLM estimation of Postsecondary GPA *=significant at 
α = 0.1, **=significant at α = 0.05,***=significant at α = 0.01 

 

Six Number Summaries: Error Terms (Predicted GPA–Actual GPA) 

 Min 1st 
Quartile Median Mean 3rd Quartile Max 

Random Forest -2.029 -0.440 -0.107 -0.031 0.274 2.749 
Linear Model -2.316 -0.445 -0.125 -0.019 0.308 2.833 

Hierarchical Linear 
Model 

-2.511 -0.451 -0.122 -0.022 0.312 2.912 

Table 5. The RF estimator outperforms OLS and HLM models in all error metrics 
except mean. 
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Figure 3. Error and Variable Importance for Postsecondary GPA Es- timation. 
Error rates stabilize after 250 trees. Even so, the estimates in this paper were all 
performed with K = 500. The most impor- tant variable in postsecondary GPA 
prediction was unquestionably HS GPA (CUMULATIVE GPA). ACT scores were 
also important, but on a lesser scale than HS GPA. Interestingly, low income School 
propor- tion was more important than ACT Science score. URM School and District 
proportions, as well as low income District proportion rank slightly less important 
than the ACT scores. Earliest Year Enrolled, and AP Scores Above 3 are deemed 
slightly more important than the demographic variables, which in order of 
importance, are: Female, mo- bile, low income, STEM, URM, Pell Eligible, 
Received Pell Grant, Special Education, Limited English, and migrant. 
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Figure 4. Partial plots of RF Postsecondary GPA Prediction, in order of variable 
importance (left to right, top to bottom). Predictions of postsecondary GPA surge 
when HS GPA increases, as well as ACT scores. Interestingly, GPA predictions 
decline after most ACT scores pass the 20-30 range. GPA predictions decline as 
low income School, URM School, and low income District percentages rise. URM 
District percentage follows a slightly diff t pattern, peaking between 30-40%. 
Lesser Earliest Year Enrolled values are associated with an increase in 
postsecondary GPA prediction. Additionally, predictions peak for 2 AP scores 
above 3. Female status, Pell Eligibility, and Pell Grant reception, are all associated 
with an increase in postsecondary GPA predictions, while mobile status, low 
income status, STEM fi status, and URM status are associated with declines in 
postsecondary GPA predictions. 
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Figure 5. Histogram and density plot of test set errors for linear models as well as 
RF model. Although the mean error for the RF model is slightly larger than the 
others, clearly the RF model is the more accurate estimator. 

 

 
Figure 6. Visualization of Actual and Predicted Values, for Random Forest (left), 
Ordinary Least Squares (middle), and Hierarchical Linear Modeling (right). One 
may note the similarities between the estimations for both linear models. The RF 
model appears to more accurately estimate low performing college students, 
although it tends to underestimate high performers. 
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Logistic Model: 
Test Set Confusion Matrix 
Predicted 
Values 
  0 1 Class Error 
Actual 0 821 557 0.4042 
Values 1 366 1996 0.1550 

 

Random Forest Model: 
Test Set Confusion Matrix 
Predicted 
Values 
  0 1 Class Error 
Actual 0 921 457 0.3316 
Values 1 388 1974 0.1643 

 

Table 6. In order to create the confusion matrices, Logistic model probabilities 
were rounded to the nearest integer, which were always 0 or 1 due to the 
constraints. The total error rate for the logistic estimations of college attainment is 
24.68%. The total error rate for the RF estimations of college attainment is 
22.59%. Importantly, the RF model is more successful in predicting non-
enrollment. 

Discussion 

Two aspects of higher education progression were predicted in this work: (1) 
postsecondary success, measured by GPA, and (2) postsecondary access, measured 
by enrollment. Cumulative GPA is a widely used metric for student success in 
higher education (Geiser and Santelices, 2007; Noble and Sawyer, 2004). 
Enrollment is an important measure of students’ educational mobility, as well as 
the education system’s ability to retain and empower students (Dowd, 2007; Garces 
and Cogburn, 2015; Hoxby and Avery, 2012; Hurtado, 2007; Karen, 2002). Each 
of these measures was chosen due to its previous usage in the field of higher 
education, as well as its objectivity and relevance to education pipeline inequalities. 
The OLS, HLM, and RF regression models predicted GPA, while logistic and RF 
classification models predicted attainment. The following subsections detail 
substantive and methodological interpretations of model results. The substantive 
discussion focuses on the demographic inequalities shown in each model, and the 
methodological discussion considers favorable and unfavorable qualities of the 



BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 4 
 

166 
 
 
 
 

models. As noted in the introduction, interpretation is the crux of quantitative 
critical analysis, and is crucial in contextualizing the RF model. 

Substantive Discussion 

What inequities in access to higher education for Utah high school students are 
shown by Random Forest, logistic, and linear models? 

According to both RF and linear models, High School GPA is the most 
important predictor of postsecondary GPA. In Tables 2 and 4, one can observe that 
every unit increase in High School GPA is associated with approximately a half-
unit increase in postsecondary GPA. Figure 3 shows that ACT scores are the most 
important predictors following High School GPA, although the most predictive 
ACT Scores (English and Math) were less than one-third as important as High 
School GPA. Linear models indicate that ACT Math is the strongest predictor of 
postsecondary GPA, and is a significant positive predictor in both OLS and HLM 
models at the α = 0.05 level but not the α = 0.01 level. The effects of AP scores are 
highly significant (p < 0.001), although the GPA increase associated with each AP 
score above 3 is approximately one-tenth that of a one unit increase in High School 
GPA (0.054 units compared to 0.556 units, according to the HLM model). 
Similarly, OLS and HLM models indicate that High School college attendance is 
significant at the α = 0.01 level, but each course is associated with less than a 0.04 
unit increase in GPA. In figure 4, one can observe that postsecondary GPA 
predictions continue to increase as High School GPA reaches its upper limit, while 
postsecondary GPA predictions decline as the ACT, AP, and High School college 
attendance variables approach their respective upper limits. This finding calls into 
question the use of ACT and AP scores as measures of potential success for high 
achieving students. When modeling postsecondary success, as measured by 
Cumulative GPA, AP scores, ACT scores, and High School college attendance are 
marginally predictive compared to High School GPA. 

The importance plot in figure 3 suggests that gender is more important than 
all other demographic factors in modeling postsecondary GPA. According to partial 
plots, female gender is positively associated with predictions in postsecondary 
GPA. While the OLS model supports the notion that female gender is a positive 
predictor of academic success (significant at the α = 0.05 level), the HLM model 
suggests that gender is not a significant predictor. Additionally, previous studies 
suggests that this relationship does not hold across many areas of study such as 
STEM fields (Beede et al., 2011). The OLS model associates female status with 
less than a 0.03 unit increase in GPA. The goals of this work do not include 
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predicting STEM involvement or post-college outcomes, although it is clear that 
further exploration of the gender impact on college success could enhance this 
work. Female status appears to be a positive predictor of postsecondary success, 
yet results are mixed around the size and scope of this relationship. 

Pell Grants were fairly important relative to other demographic traits; both 
OLS and HLM models list Pell Grant reception as a positive coefficient. 
Additionally, partial plots show that Pell Grant reception is a positive predictor of 
postsecondary 

GPA in the RF algorithm. These relationships indicate that Pell Grants may 
have a compensatory effect for the consistent disadvantage that low income 
students face (low income status was associated with a 0.07 unit decline in GPA 
according to OLS and HLM models). Pell Eligibility was not significant in OLS or 
HLM models, while Pell Grant reception was significant at the α = 0.01 level in 
both models, corresponding to more than a 0.1 unit increase in GPA in each case. 
Pell Grants may be an incredibly effective tool in mitigating the structural burdens 
that plague economically disadvantaged students. However, in the RF estimation, 
Pell Eligibility was also a positive predictor of GPA, and slightly more important 
than Pell Grant reception. Reasons for this finding are unclear. Although Pell 
Grants appear to significantly increase the success of low income students, it may 
be useful to further study students who are eligible for Pell Grants but do not receive 
them. 

Some of the most important variables under consideration were the 
proportions of URM and low income students housed within a school or district. 
The OLS model suggests that the proportion of URM students in a school district 
is positively associated with Postsecondary GPA, and the HLM model finds no 
relationship between these variables. The RF model shows that the effect of URM 
student proportion is not linear; the predicted success of students declines if they 
originate from a district with more than 30% URM students. Similarly, RF 
postsecondary GPA predictions decline as the proportion of URM students in a 
High School rises past 30%, although this relationship is insignificant in the OLS 
model and positively significant at the α = 0.1 level in the HLM model. According 
to OLS and HLM models, High School low income proportion was a negative 
predictor of postsecondary success (significant at α = 0.01 and α = 0.1, 
respectively). District low income proportion was significantly negative at the α = 
0.1 level in the HLM model as well. Partial plots showed steadily declining 
postsecondary GPA predictions as High School and District low income 
proportions increased. RF and linear models suggested that higher proportions of 
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low income students in both districts and high schools were associated negatively 
with Postsecondary GPA; the same finding was true for URM school and district 
proportions above 30%, indicating that students from districts and schools serving 
high proportions of URM or low income students are less prepared to succeed in 
higher education when compared to their peers. Students from districts with 
extremely low URM proportions may be at a disadvantage as well. These findings 
point to a nuanced lack of equal opportunity at the school- and district-levels. 

The effects of variables such as mobility and STEM participation were not 
considered central to the purpose of this work, but were likely related to structures 
of equity in higher education. Mobile status is a significant positive predictor of 
success according to the OLS model, insignificant in the HLM model, and a 
negative indicator of postsecondary success according to RF. Regardless of 
direction, the effect of mobility appears to be quite small; OLS model suggests that 
mobile status is associated with only a 0.04 unit reduction in postsecondary GPA. 
STEM participation was identified by OLS and HLM models as a significant (α = 
0.01) negative predictor of postsecondary success, accounting for 0.08 and 0.07 
unit decreases in GPA, respectively. Similarly, the RF model identifies STEM 
participation as a negative predictor of postsecondary GPA. Variables such as 
migrant status, Special Education status, and Limited English status were largely 
unimportant in RF and linear models, perhaps due to small population sizes. 

Methodological Discussion 

Can Random Forest predict student success in higher education more accurately 
than logistic or linear estimators? 

A major goal of this work is to assess the predictive accuracy of the RF 
algorithm in comparison to OLS, HLM, and logistic models. The RF algorithm is 
evaluated against the logistic model in estimation of postsecondary enrollment 
(access), and is evaluated against OLS and HLM models in estimation of 
postsecondary GPA (success). Each model has favorable and unfavorable qualities. 
The RF algorithm is more accurate than the logistic model in prediction of 
postsecondary access, but less accurate than linear models in prediction of 
postsecondary success. Linear and logistic models feature readily interpretable 
coefficients that specifically describe the impact of any particular variable. 
However, the RF model includes its measure of variable importance, as well as 
representation of the varying impact that individual predictors assert on the model 
(visualized through partial plots). Such features of the RF allow the researcher to 
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better understand non-linear relationships between variables. This section delves 
into the advantages and disadvantages of each model. 

Partial plots provide greater context around the influence of variables, 
allowing for comparisons between the directionality of predictors in RF and linear 
models. Figure 3 displays the partial plots for the 19 most important predictors of 
postsecondary GPA. In this work, partial plot results show the same directional 
relationship as linear model coefficients in 10 out of the 12 and 7 out of 7 significant 
(α = .05) relationships identified by the OLS model and HLM model, respectively. 
Compared to linear model results, partial plots produce more information about the 
shape of relationships between variables. In the case of District URM proportion, 
the partial plot shows that the relationship with postsecondary GPA is positive for 
values less than 0.3 and negative for values greater than 0.3, whereas OLS and 
HLM models denote this relationship as strictly positive. Perhaps students situated 
in districts with very low and high percentages of URM students both experience 
some sort of disadvantage, but linear models are unable to make this distinction. 
Based on linear models alone, one may be led to believe that postsecondary GPA 
predictions should increase uniformly as District URM proportion rises. RF 
suggests that such a conclusion would be false. Despite its drawbacks, the RF model 
adds a level of detail to the relationships between predictor variables and 
postsecondary GPA which is impossible to ascertain using linear models. 

In figure 6, one can observe that the linear models have trouble predicting 
noisy data. While OLS and HLM models create similar predictions, the RF model 
can be distinguished as a fundamentally different prediction method. By visual 
inspection, one can see that RF captures more randomness in the data, while also 
making precise estimates. Because the RF model is based on aggregated decision 
trees which are calculated from randomly sampled data, the RF model will not 
estimate GPA under 0 or above 4. Both predictors slightly underestimate the GPA 
for many high achieving students (HS GPA near 4.0). However, this appears to be 
especially true for the RF model. Upon visual inspection, it seems that the RF model 
better captures noise among students with low High School GPAs, while linear 
models better predict the success of students with greater High School GPAs. 
Visual observation shows that the RF and linear models are structurally different, 
although neither is clearly superior. 

Table 3 provides insight in the distribution of predictions made by the 
models tested. Minimum values of RF, OLS, and HLM predictions were much 
higher than the actual test set minimum value, but measures of centrality were 
similar to test set values (the median and mean predictions for all three models fell 
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within 0.25 and 0.031 of the test set values, respectively). While the distribution of 
linear model estimations was closer to the distribution of actual values in terms of 
their mean and median, the RF was closer to approximating the 1st and 3rd quartiles, 
as well as the minimum and maximum. Linear models both predict GPA values 
above 4.0, an undesirable quality as this is impossible. In Table 5, one can observe 
that the RF model had a larger mean absolute error term in predicting the test data 
(0.03, compared to 0.02 for OLS and HLM models each). However, the 1st and 3rd 
quartile values, as well as minimum and maximum values, for the RF model error 
terms were closer to 0. Additionally, the median error value in the RF model was -
0.107, compared to -0.125 for the OLS model and -0.122 for the HLM model. By 
visual inspection of figure 5, one can see that the error terms generated by RF are 
more densely centered around 0 than those of linear models, suggesting that RF 
produces estimates that are slightly closer to the actual test set values. However, 
these differences were small. Without much specification, the RF model figures the 
shape of postsecondary GPA data better than linear models, but linear models 
provide more accurate estimations of centrality. 

In predicting college attainment, the RF model clearly outperforms the 
logistic model. To create the confusion matrices in Tables 6, probabilities were 
rounded to the nearest integer, which were always 0 or 1 due to the constraints of 
the logistic model. The RF model performs slightly better than the logistic model 
in estimating college attainment, with an error rate that is 2.1 percentage points 
lower (22.6% compared to 24.7%). Additionally, the RF model has a much smaller 
class error rate predicting those who did not enroll (33.3% as opposed to 40.4%). 
Predictions are more difficult for this group, as it is smaller than those who enrolled 
(36.8% of the sample size). The logistic model has a slightly lower error rate than 
RF for those who enrolled in college (15.5% compared to 16.4%), although this 
only represents 22 individuals. Overall, the RF model predicts postsecondary 
success more accurately than the logistic model. 

This work compares RF to linear and logistic models in their abilities to 
make predictions and critically interrogate relationships between variables. RF 
models provide further insights into higher education data, particularly with 
features such as partial plots and variable importance, which can provide 
information around predictive power and non-linear relationships between 
predictors and outcomes. While the RF model underperformed linear models in 
mean predictions errors of postsecondary GPA, the RF model did have a smaller 
median prediction error. The RF algorithm appears to capture the shape of 
postsecondary data well, based on visual inspection and quantile comparisons, 
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although linear models may perform slightly better for students with greater High 
School GPAs. While the logistic model predicts enrollees slightly better than the 
RF algorithm, overall RF is superior in terms of estimating college access. 
Although the RF model did not outperform the other models in every application, 
it offered distinct advantages and was generally preferable to linear and logistic 
models. 

Conclusions 

How can the Random Forest algorithm advance quantitative higher education 
scholarship? 

Following Frances Stage’s model of critical quantitative inquiry, this work 
makes an effort to (1) further the understanding of current educational inequities 
using data and (2) challenge the current models being used to assess equity in higher 
education. Specifically, educational inequities in postsecondary access and success 
in the state of Utah were evaluated using four different models. The RF algorithm 
was then compared to the other three models in terms of its ability to describe 
relationships between education variables, as well as its accuracy in predicting 
student outcomes. This section describes substantial and methodological 
contributions to critical quantitative education research. 

Substantially, this work identifies several trends in Utah’s higher education 
pipelines. Factors such as race, gender, low income status, mobile status, school, 
and district are investigated as potential drivers of student success. Of the variables 
included, low income status is consistently the most significant demographic 
predictor of success in higher education, reflecting the significant academic 
potential that is mitigated by economic circumstance. The academic barriers that 
accompany economic vulnerability are starkly evidenced by the negative 
relationships between the proportion of low income students in a district and the 
postsecondary success of students from that district. In fact, a school’s proportion 
of low income students is found to be more important than ACT Science scores in 
predicting college success. Other com- munity effects, such as the proportion of 
URM students or low income students in an individual’s school or district, were 
found to be important predictors of college success, outweighing individual-level 
demographic measures. Persistent demographic inequities exist in Utah’s higher 
education pipelines. The present research particularly shows the disadvantage faced 
by low income students, as well as students who attend largely low income schools 
and districts. 
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Those concerned with economic gaps in higher education pipelines might 
be interested in the predictive qualities of High School GPA and Pell Grant 
reception. In addition to being a better predictor of college success, High School 
GPA typically contains less bias toward wealthier students than many other college 
entrance metrics, such as ACT scores, AP scores, and High School college 
attendance. Both RF and linear models show that High School GPA is the most 
significant predictor of postsecondary GPA. The RF model finds ACT scores as 
somewhat important predictors of postsecondary GPA, while linear models find 
ACT scores to be fairly insignificant. AP scores were even less important in each 
model. Relative to ACT and AP results, as well as High School college enrollment, 
High School GPA had by far the largest impact on predictions of postsecondary 
success in every model. Additionally, Pell Grants should be further studied as a 
potential tool for dismantling income-related barriers to higher education. Linear 
models indicate that Pell Grant reception is a significant positive indicator of 
postsecondary success, while RF models show that both Pell Eligibility and Pell 
Grant reception are positively associated with postsecondary success. Pell Grants 
and GPA-based admissions should be further investigated as potential tools for 
ameliorating the demographic inequities in Utah’s higher education pipelines. 

Methodologically, this work evaluates the RF algorithm as a tool for 
predicting student enrollment and performance within higher education. The RF 
algorithm predicted student enrollment with greater accuracy than logistic 
estimation. Linear models outperformed RF in mean error terms, but the RF 
algorithm had smaller median and quartile error terms. Additionally, the RF model 
provided a myriad of novel applications for viewing and understanding the data. 
This paper used the partial plot and variable importance features to enrich 
discussion around higher education variables. While OLS and HLM methods were 
unable to capture the nuances in the relationships between predictions and school- 
or district-level variables, RF clearly modeled these relationships, allowing for a 
better understanding of the effects of low income and URM proportion in schools 
and districts. The RF model was useful not only in its ability to predict student 
access and success, but also in its abilities to critically interrogate variable 
importance and predictive impact. 

Therefore, the author advocates for the use of RF in critical quantitative 
higher education research. In addition to making quality predictions, the RF output 
is interpretable, with variable importance readily ascertained from its decision trees. 
Partial plots are useful in deducing the directionality of predictor variables, even 
when directionality is dependent on specific values. Although variable importance 



BUTLER JOURNAL OF UNDERGRADUATE RESEARCH, VOLUME 4 
 

173 
 
 
 
 

plots and partial plots may stand alone, it is beneficial to compare such results with 
linear model coefficients.  

While empirical in nature, RF results are not meant to be utilized as 
objective measures of reality. Instead, the algorithm provides information around 
student experiences, information which can be used to supplement the results of 
other models and give researchers a broader depiction of intricate relationships 
between predictors and outcomes. Critical quantitative studies on higher education 
stand to benefit from the RF algorithm’s novel prediction framework, accurate 
predictions, detail in describing predictive importance, and emphasis on 
interpretation. 

Within the field of critical quantitative higher education, interpretation of 
results is widely considered the most important part of the research process. The 
RF model contributes new interpretations of student data to the field of critical 
quantitative research in higher education, some of which were not possible with 
linear or logistic models. Using the RF model, non-linear changes in predictive 
power can be viewed, allowing one to better grasp the effects of changes to 
individual variables on predicted outcomes. Variable importance can be understood 
in terms of out of bag errors, which are fundamentally different than traditional 
significance tests.  

A second tenet to critical quantitative research is that it challenges previous 
work. Throughout this work, RF models contradict linear and logistic models’ 
conclusions around issues such as predictive directionality and variable 
significance or importance.  

Lastly, critical research is motivated by the desire to change society. This 
work identifies GPA-based admissions and Pell Grants as potential tools for 
critically improving student access and success. Works that evaluate the use of such 
tools, and leaders who implement such policies, will inevitably change the structure 
of higher education. This work’s methodological and substantial findings are 
intended to expand the possibility of equitable education systems, as well as the 
notion that education pipelines might be advanced with quantitative design. Future 
studies comparing the efficacy of predictive algorithms and interpreting results 
critically to describe postsecondary pipelines will further current conceptions of 
equity within postsecondary education.
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