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Abstract 

Atrazine is the most commonly used herbicide in the United States, with 80 million 

pounds applied annually, making it the most common contaminant of ground and surface water 

nationwide . It has been shown to act as a potent endocrine disrupter in amphibians, causing 

altered somatic and gonadal development in the ecologically relevant part per billion range; as a 

result, it has been hypothesized that atrazine may be a major factor behind amphibian declines. 

However, responses of different species to the chemical vary widely, and have made predicting 

susceptibility difficult. Recently, it has been shown that life history can serve as a strong 

predictor of vulnerability, as the speed of somatic development and the timing of gonadal 

differentiation may determine the effects of exposure . However, previous studies leading to 

these conclusions have examined atrazine under stable laboratory conditions, although it is 

widely accepted that chemical contaminants can interact synergistically with natural stressors in 

the wild, producing exaggerated effects. To test whether more stressful conditions alter the 

effects of atrazine with respect to existing data, we raised Bufo american us tadpoles under 

more stressful conditions, including a high larval density and simulated pond drying, and 

exposure to ecologically relevant doses of atrazine (0, 0.1, 1, 25 ppb) . We measured markers of 

somatic development (mass, time, survival at metamorphosis) and gonadal differentiation 

(ovarian stage in females, presence of testicular oocytes in males) . Our results do not suggest 

that stressful conditions worsen the effects of atrazine, as only mass at metamorphosis was 

affected by exposure. Our results are interesting, however, in that they support the hypothesis 

that atrazine displays a non-monotonic dose-response curve, with very low concentrations (0.1, 

1 ppb) producing the most severe effects, an important implication for any conservation policy 

regarding the chemical. 
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Introduction 

Biodiversity and Amphibian Declines 

The global biodiversity crisis has received a great deal of attention in recent years due to 

the startling rate of extinctions over the past few centuries. In fact, the extinction rate over the 

past 1000 years is more than 10 times the background rate over the past 540 million, indicating 

that species are disappearing at rates that rival those of previous mass ext inctions, such as the 

familiar event at the end of the Cretaceous period 65 million years ago, which led to the demise 

of the dinosaurs and an estimated 76% of extant species at the time (Baraonosky et al. 2011). 

Class Amphibia is one taxon that has experienced especially steep, global declines in recent 

years, with 1856 species (32 .5% of all known species) listed as Vulnerable, Endangered, or 

Critically Endangered by the IUCN in 2001, compared to 1211 species (12%) of birds and 1130 

species (23%) of mammals (Stuart et al. 2004) . Thus, amphibians seem to be disappearing at a 

much more alarming rate than other vertebrates, an especially intriguing trend given that 

amphibians have persisted through the previous four periods of mass extinction (Wake and 

Vredenburg, 2008). 

Despite the vast interest in amphibian declines since their elucidation in the late 1980's, 

research has failed to provide a unified explanation . For example, in examining the 435 species 

that are experiencing especially rapid declines (i.e. those that have been elevated to a higher 

threat level on the IUCN Red list than in 1980), 50 are declining because of overexploitation and 

• 

183 because of habitat loss, leaving 207 species categorized as facing "enigmatic declines," 

defined as those cases where sufficient habitat exists, but species are still declining (Stuart et al. 

2004) . Many recent studies have sought to shed light on the mechanisms underlying these 
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poorly understood cases, and it has become clear that there are a variety of factors aside from 

habitat loss and overexploitation, the most significant of which being global climate change, 

chemical contamination of the environment, disease and pathogens, and the presence of 

invasive species (Semlitsch, 2003) . These are all factors with the ability to affect populations 

even in situations where sufficient habitat exists, which means that even animals living in what 

may traditionally be considered unaltered environments, such as large national parks and 

nature preserves, are susceptible to these threats. 

Chemical Contamination 

Among the factors behind these "enigmatic declines", few have received attention 

comparable to that which has been paid to the effects of chemical contamination. Rachel 

Carson's Silent Spring (1962) first raised public attention regarding the effects of chemical 

contaminants on wildlife by highlighting a great deal of anecdotal evidence of their effects, 

including dead birds scattered across lawns, reproductive failure among carnivorous birds and 

farm animals, and even disease in humans after exposure (Boone and Bridges, 2003). 

Thankfully, modern pesticides (which include herbicides and fungicides) are more short-lived 

and tend to bioaccumulate to a lesser degree than those applied in the mid 20'h century, due to 

more extensive regulation under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), 

which was officially adopted in 1942 (Cowman and Manzanti, 2000) . However, FIFRA has done 

little to curb the application of pesticides in the United States, with approximately 20,000 

pesticides approved for release into the environment (Boone and Bridges, 2003) . 

While many of these chemicals are more benign than those which were the inspiration 

for Carson's novel, the toxicological tests currently required under FIFRA and related legislation 
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are, in many ways, insufficient with regard to their ability to predict effects on communities of 

non-target species (such as amphibians) in the wild . This is because most standard assays for 

the effects of pesticides on bystander species are accomplished through acute toxicity tests; 

non-target organisms of representative taxa are exposed to varying concentrations of the 

chemical in question, and an LC SO (the lowest concentration required to kill 50% of the sample) 

is determined. While this methodology presumably identifies species that are vulnerable to 

direct mortality as a result of a contaminant, it is not typical for amphibians to experience direct 

mortality in the wild, as concentrations of pesticides rarely reach levels necessary to produce 

this effect (Bridges and semlitsch, 2001). Rather, there is a growing body of evidence indicating 

that ecologically relevant doses of chemicals, far below the thresholds determined by standard 

toxicity screening, have the ability to drastically affect amphibian populations due to sublethal 

effects which may indirectly lead to mortality (Bridges, 1997). 

Sublethal effects can be either direct or indirect with respect to the amphibian in 

question, and vary widely depending on the species. Direct effects refer to instances in which a 

chemical directly alters the physiology of the organism, and are widely observed in amphibians . 

For example, organophosphate and carbamate pesticides are neurotoxins which inhibit 

acetylcholinesterase (AChE) activity in amphibians. Although not lethal at low, ecologically 

relevant concentrations, these low doses can impair motor activity and produce a variety of 

detrimental effects. Carbaryl, a common insecticide sold under the trade name Sevin, has been 

widely studied and can serve as a model to exhibit direct and indirect effects of sublethal 

contaminants. First, carbaryl has been shown to reduce the swimming capacity of tadpoles, a 

direct effect (Bridges, 1999a). This decreased activity may then lead to lead to non-adaptive 

predator avoidance behaviors (Bridges 1999a, 1999b), and decreased feeding behavior, which 
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may lead to smaller metamorphs, which are likely to exhibit decreased survivorship (Wilbur and 

Collins, 1973) and also decreased egg production in females, as size at metamorphosis and egg 

production are positively correlated (Semlitsch et al. 1988). Indirect effects are also common, 

and refer to instances in which a pesticide alters the food web in a given community. 

Furthermore, they can be especially relevant in natural settings. While the aforementioned 

carbaryl studies demonstrated negative effects such as decreased size, time, and survivorship to 

metamorphosis, still others have revealed the exact opposite (Boone et aI., 2001; Boone and 

Semlitsch, 2002) . In these scenarios, carbaryl is hypothesized to have negatively affected 

zooplankton populations, which in turn led to an increased algal population, allowing tadpoles 

to feed more effectively. Thus, it is clear that sublethal contaminants have the ability to 

drastically alter amphibian communities through both direct and indirect mechanisms, and with 

varying outcomes depending on not only species, but also on the structure of the entire 

community. 

In understanding how sublethal effects can lead to population and community level 

disruption, it is also of critical importance to understand that organisms do not encounter 

contaminants in a vacuum. Rather, pesticides are an added stressor, which interact with many 

other factors to produce their effects. These interactions are often synergistic, with the 

combined stress of several components far outweighing the effects of any component in 

particular. Stressors that have been shown to interact with chemical contaminants to produce 

synergistic effects include predator-induced stress (Relyea and Mills, 2001; Relyea, 2003), 

hydroperiod (Boone and Semlitsch, 2002), density and intraspecific competition (Boone and 

Semlitsch, 2001), and additional chemical contaminants (Boone and James, 2003). Regardless of 

the pesticide in question, it is critical to recognize that any ill effects noted in laboratory 
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exposures are added stressors, with the ability to produce synergistic effects when coupled with 

other stressors in the environment. 

Atrazine 

Atraline (2-chloro-4-ethylamino-6-isopropylamino-s-trialine) is one of the most broadly 

utililed pesticides in the world . It is primarily applied to corn, but also to sorghum and 

sugarcane in order to control both pre- and post-emergent, annual broad -leaf weeds and 

grasses. In the United States alone, more than 80 billion pounds are applied annually, making it 

the most common pesticide contaminant of ground, surface, and drinking water (Soloman et aI., 

1996). Atraline also has the ability to travel over 1000 km from the site of application via 

rainfall, giving it the potential to contaminate wetlands, even in otherwise remote or pristine 

areas where it is not used (Thurman and Cromwell, 2000; Mast et aI., 2007). Over 20 million 

pounds of atraline are precipitated in rainfall each year in the United States (Thurman and 

Cromwell, 2000) . As a result of these properties, atraline was banned for use in the European 

Union in 2004 (Ackerman, 2007) . 

Application of atraline in the United States has become a subject of controversy due to 

a wealth of evidence indicating that it acts as a severe endocrine disruptor, even in the 

ecologically relevant parts per billion (ppb) range. Atraline seems to exhibit its most potent 

effects in amphibians, although it has been shown to produce ill effects in other vertebrate taxa 

as well, including disruption of osmoregulation in Atlantic salmon (Salmo solar), skewed sex 

ratios in lebrafish (Danio rerio), altered steroidogenesis in alligators (Alligator mississippiensis), 

altered gonadal development in chickens (Gallus gallus domesticus), and increased estrogenicity 

and the potential for reproductive cancer in human cell lines {Crain and Guillette, 1997; Fan et 
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al. 2007; Matsushita, 2006; Sanderson et ai, 2001; Suzawa and Ingram, 2008; Waring and 

Moore, 2004). The mechanism by which atrazine produces endocrine disruption has only 

recently been revealed; atrazine binds and inhibits phosphdiesterase in the cell. Inhibition of 

phosphodiesterase causes an elevated level of cyclic AMP (cAMP), which in turn leads to 

increased transcription of the CYP 19 gene coding for the enzyme aromatase . Aromatase 

functions to convert testosterone to estrogen, so the ultimate effect is an elevation of estrogen 

levels in the organism (Fan et aI., 2007) . 

Atrazine-induced endocrine disruption in amphibians has been extensively studied for a 

variety of reasons. First, endocrine disruption as a result of atrazine exposure takes place at 

very low concentrations in amphibians. In fact, doses as low as 0.1 ppb, well below the EPA 

specified maximum allowable concentration in drinking water (3 ppb), have the ability to 

produce severe gonadal malformations (Hayes et al. 2003). Secondly, it is likely that a large 

proportion of amphibian populations in the United States are being exposed to the chemical in 

the wild, as it is extensively used in the Midwest and has the ability to travel to other regions via 

rainfall (Figure 1; Mast et aI., 2007; Soloman et aI., 1996; Thurman and Cromwell, 2000) . lastly, 

the timing of application makes it of particular concern for breeding amphibians; because it is 

primarily a pre-emergent herbicide, atrazine is most heavily applied in the spring. 

Unfortunately, the times of the year during which atrazine levels are highest in surface water 

coincide with periods of amphibian larval development (Figure 2; Conant, 1998; Stebbins, 1995). 

This is significant because amphibian larvae are especially vulnerable to exogenous chemicals as 

a result of the thin, porous skin and gill membranes (Hall and Henry, 1992). However, it is also 

important because the larval period is also the time in which gonadal differentiation begins in 

most species; since differentiation is largely regulated by endocrine hormones such as estrogen 
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and testosterone, changing the concentrations of these hormones (as atraline does) has the 

ability to alter the formation of reproductive tissue, an irreversible process with potentially dire 

implications for successful reproduction later in life. 

Numerous studies have examined the effects of atrazine on amphibians, using a variety 

of endpoints. Atraline exposure during the larval period has linked to a variety of effects; 

altered laryngeal sile and morphology, as well as nuptial pad and breeding gland morphology, 

reduced fertility, reduced mating success in mate choice experiments, increased gonadal 

aromatase expression, altered plasma hormone concentrations, and increased time to 

metamorphosis have all been observed (Hayes et al. 2002, 2010; Miyahara et aI., 2003; Storrs 

and semlitsch, 2008). However, the most commonly noted effects are morphological 

abnormalities in male gonads; atrazine exposure can lead to underdevolped testicular tissue, 

testicular oocytes, ovotestes (testicles containing >30% oocytes), and even complete sex 

reverasal, where genotypic males develop as phenotypic females with the ability to successfully 

reproduce (e.g., Hayes et aI., 2002, 2003, 2010; Storrs and semlitsch, 2008). All of these 

malformations have the ability to negatively affect amphibian populations through a variety of 

mechanisms, which likely act as added stressors for wild amphibian populations; it is clear why 

atraline is suggested to playa significant role in amphibian declines (Hayes et aI., 2010). 

Howeve r, amphibian gonad histology as it relates to atraline exposure has become a 

subject of controversy (Storrs-Mendel and semlitsch, 2009). This controversy stems largely 

from a suite of studies reporting testicular oocytes in unexposed testes, leading to the 

suggestion that perhaps testicular oocytes are a normal part of amphibian testicular 

development (e.g., Coady et aI., 2004; Jooste et aI., 2005; reviewed in Hayes, 2004). It has 

rece ntly been suggested, however, that the inconsistencies in histological data can be explained 
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when viewed through the scope of life history. Amphibian species undergo sexual 

differentiation at different rates, summarized as basic, retarded, or accelerated; in species with 

accelerated rates, testes are likely to be fully differentiated at the time of metamorphosis, while 

species following the basic rate are not fully differentiated until 3.5 weeks post-metamorphosis, 

with retarded rate species reaching differentiation much later (Ogielska and Kosutz, 2004). 

Furthermore, a period of intersex (including the presence of testicular oocytes) is normal for 

unexposed individuals of some or all species before differentiation, but is not normal in fully 

differentiated individuals (Storrs-Mendez and Semlitsch, 2009). Since most studies noting 

testicular oocytes in control groups have utilized metamorphosis as an endpoint, it is likely that 

individuals in these experiments were passing through a natural period of intersex en route to 

complete sexual differentiation. 

The rate of somatic development also varies widely between amphibian species and can 

be affected by atrazine exposure (Storrs and Semlitsch, 2008) . This is important because the 

rate of somatic development is negatively correlated with size at metamorphosis (an important 

predictor of survival and reproductive fitness in the terrestrial stage) and also predicts metabolic 

activity, with speedier development correlated to increased metabolism in the tadpole (Beck 

and Congdon, 2000; Semlitsch et aI., 1988; Wilbur and Collins, 1973). Recent evidence suggests 

that the rate somatic development may be a strong predictor of amphibian susceptibi lity to 

atrazine . Species with rapid somatic development tend to experience the most dramatic 

somatic effects as a result of exposure, such as a lengthened larval period or decreased mass at 

metamorphosis, while basic rate species experience mixed somatic effects and species with 

retarded somatic development seem unaffected (Storrs and Semlitsch, 2008) . 
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Thus, developmental rates show a great deal of promise in predicting the effects 

atrazine will have on a given species, which would be an invaluable tool for elucidating the 

chemicals role in amphibian declines. However, as the aforementioned carbaryl examples 

demonstrate, the effects of a given contaminant are dependent on environmental factors such 

as competition, predation, hydroperiod, and additional chemicals, which can all be viewed as 

added stressors encountered by amphibians in nature. A majority of the data suggesting these 

correlations between the effects of atrazine and developmental rates has been under "low 

stress" conditions, with larvae commonly reared individually in jars with stable environmental 

conditions. In order to examine how these predictions may vary in nature as a result of added 

stressors,we reared Bulo americanus tadpoles with ecologically relevant doses of atrazine (0, 

0.1,1,25 ppb) under stressful conditions, including a high larval density (intraspecific 

competition) and simulated pond-drying. Since B. americanus follows an accelerated rate of 

somatic development, it is predicted to be highly susceptible to disrupted somatic development. 

Furthermore, since it displays the retarded rate of sexual differentiation, B. american us gonadal 

differentiation and morphology should be relatively unaffected by atrazine exposure . 

Methods 

Larval Exposures: 

Two Bulo americanus egg masses were collected on May 25, 2009, at Morgan-Monroe 

State Forest (Morgan County, Indiana) . The masses were then transferred to the laboratory, 

where they were placed together in a single aquarium, in water collected at the field site . Over 

the next five days, the eggs were allowed to hatch and develop into free swimming tadpoles. 

On May 30, 2009 (Day 0). tadpoles were haphazardly distributed into aquaria for treatment. 
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The experiment incorporated three levels of atrazine exposure (0.1 ppb, 1 ppb, and 25 

ppb) and a solvent control, which received only ethanol. Within each treatment were three 

replicates, each consisting of 40 tadpoles placed in a size 10 aquarium (50.8 x 25.4 x 30.5 cm) 

with 10 l of tap water, neutralized with AquaSafe Water Conditioner (Tetra Holding Inc., 

Blacksburg, VA, USA) . One stock solution of analytical-grade atrazine (99 .9% pure; Supelco 

Analytical, Bellefonte, PAl was prepared, and appropriate dosing was achieved by varying the 

aliquot with a micropippetter. Treatments receiving less stock solution (including the control) 

received additional ethanol to ensure that the concentration of solvent was identical across 

treatments. Water was changed every third day in order to remove waste, renew chemical 

treatments, monitor mortalities, and rotate tanks among shelving units (to eliminate position 

effects). Tadpoles were also fed at this time; tanks received Vita+Plus Rabbit Formula (Sunseed 

Company, Inc., Bowling Green, OH, USA) in quantities su fficient to allow for ad libitum feeding. 

One tank in the 0.1 ppb group experienced severe mortalities (36 of 40 tadpoles perished) 

during the first three days of the experiment (Fig . 3,4); since this event was not caused by 

treatment with atrazine, the tank was recolonized with tadpoles from the original stock during 

day 3. Time to metamorphosis was adjusted to com pensate for this event. 

When the presence of forelimbs were noted on one individual in a tank (Gosner stage 

42-46), the water level was lowered to 5 l and the gravel substrate pushed aside to create a 

mound such that metamorphosing individuals were offered the option to leave the water. At 

the completion of metamorphosis (Gosner stage 46, complete tail reabsorption), each animal 

was sacrificed in 1% Finquel MS-222 (tricaine methanesulfonate; Argent Chemical laboratories, 

Redmond, WA), measured for mass to the nearest 0.001 g and time to metamprophosis (days), 
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fixed in Bouin's Solution (Ricca Chemical Company, Arlington, TX). and stored in 70% ethanol for 

later histological analyses 

Histology: 

The fixed kidney-gonadal complexes were dissected out, dehydrated, and embedded in 

Paraplast Embedding Medium (Fisher Scientific, Pittsburgh, PAl . Sectioning was performed at 

either 7 or 11 I'M thickness (AD 820 Microtome, American Optical, Buffalo, NY), and sections 

were subsequently placed on gelatin-coated slides. Mounted sections were stained with 

Mallory' s Trichrome Stain . Photos were taken with a Spot RT camera (Diagnostic Instruments 

Inc., Sterling Heights, MI) . 

Statistical Analysis: 

All data were analyzed by one-way, fixed effects ANOVAs (Microsoft Excel 2007). For 

survivorship to metamorphosis, the last day of tank maintenance prior to the first day of 

sacrificing was used as an endpoint. Survivorship was calculated as the proportion of surviving 

individuals, and these values were arcsine transformed prior to statistical analysis. Time to 

metamorphosis was defined as the number of days from the beginning of treatment to the 

completion of metamorphosis; these data were inverse-transformed prior to analysis. Mass at 

metamorphosis was subjected to a log transformation prior to analysis. Pairwise comparisons 

were conducted using Tukey's test for multiple comparisons (MINITAB) . Statistical significance 

was defined as a P-value < O.OS . 
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Results 

Chemical Effects On Gonadal Development 

Analyses of gonadal histology were confounded by histological error. Only a few slides 

were successfully processed to produce interpretable histological features. A majority of slides 

were unusable because the orientation of sections failed to properly intersect the gonads. 

Slides that were sectioned with proper orientation suffered from a variety of flaws, including 

nicks and holes in sections, blade chatter, improper staining, and insufficient definition (cells 

difficult to identify, with an overall blurred appearance). 

Chemical Effects On Somatic Development 

Survivorship to metamorphosis was not affected by treatment with atraline, although 

all chemical treatments exhibited lower survivorship than the control (Fig. 3, 4, Table 1; F' .II = 

1.08, P = 0.410) . Time to metamorphosis was also unaffected by treatment with atraline, 

although again in this case, all chemical treatments exhibited lengthened larval periods in 

comparison with the control treatment (Fig. 6, Table 4; F, . II = 0.469, P = 0.712) . Mass at 

metamorphosis showed an overall significant effect with respect to treatment with atrazine, as 

all chemical treatments produced larger metamorphs than the control (Fig. 5, Table 2; F' . II = 

4.20, P = 0.046) . However, pairwise comparisons failed to identify statistically significant 

differences between treatments, although both the 1 ppb treatment and the 0.1 ppb displayed 

the greatest differences from the control group and were both only slight above P =0.05 (Table 

3; P = 0.054 and 0.069 respectively) . 
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Discussion 

Effects On Gonadal Development 

A variety of histological errors prevented any analyses of gonadal development. 

Initially, we modeled our histological protocol after that referenced in Hayes et al. (2003), with 

the exception of orientation; rather than transverse sections/ we chose to begin with 

longitudinal sections, which we intended to intersect a large portion of the gonad proper. 

However, our first attempts failed to achieve this orientation . Rather, we would commonly 

obtain a large portion of kidney, a significant portion of the Bidders organ (an ovary-like organ of 

unknown function, present in both sexes, located at the anterior end of the gonad proper, and 

composed primarily of diplotene oocytes), and only a small portion of gonad proper (Fig. 7) . 

Another common problem with these early attempts was heavily degraded tissue, which had a 

flakey or even shredded appearance (Fig . 8) . A large number of samples also suffered 

degradation during sectioning, with nicks and holes in the sample as the most common 

symptom. These slides were aborted prior to staining, so photographic documentation was 

excluded here. 

In an attempt to rect ify difficulties in finding the proper orientation to intersect large 

areas of the gonad proper, and to address the issue of nicks from the microtome blade, we 

attempted several series of transverse sect ions. Wh ile damage caused by the microtome blade 

was largely averted, tissue degradation continued to prevail, and compression of sections 

became an issue (Fig. 9). Although we were confident in the ability of this protocol to target the 

gonad proper, slides were even more diffi cult to interpret than sect ions taken longitudinally. 
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Given the lack of success with transverse sections, we again returned to longitudinal 

sectioning, but altered the tissue processing protocol. Given that two of the most common 

flaws in slides thus far had been degradation and damage from the microtome, it was 

determined that insufficient infiltration of paraffin was the most likely cause; we attempted to 

rectify this by increasing the infiltration period, allowing the kidney-gonadal complex to incubate 

for up to 4 weeks in molten paraffin . Although this round of sectioning did produce slides in the 

proper orientation, degradation continued to occur. As a result, we increased the thickness of 

our sections to 12 I'M . To date, we have completed one preliminary round of sectioning at this 

thicker setting. It appears that sectioning at 12 I'M has largely rectified the degradation and 

microtome damage issues; although markedly understained, these slides do reveal the overall 

structure of the developing gonads. Adjustments to the staining procedure will likely produce 

slides that are clear and ready for analysis (Fig 10). 

Somatic Effects 

Our results indicate that atrazine exposure does alter somatic development, at least 

with respect to mass at metamorphosis, and that the most severe effects often occur at very 

low, ecologically relevant doses; mean mass and survivorship were both most different from the 

control mean at 1 ppb and 0.1 ppb, highlighting the importance of examining the sublethal 

effects of this chemical at low concentrations. Furthermore, our more stressful conditions 

(higher larval density, simulated pond drying) did not intensify somatic effects with respect to 

past work (Storrs and Semlitsch, 2008) . This is surprising, given that our higher larval densities 

likely did lengthen the larval period with respect to the species average (Wilbur, 1977) and 

averages from past work (Storrs and Semlitsch, 2008; Storrs-Mendez and Semlitsch, 2009) . It is 
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also surprising given the wealth of data suggesting synergistic effects of natural stressors and 

chemical contaminants (e .g. Relyea and Mills, 2001; Reylea, 2003; Boone and James, 2003) . 

Mass at metamorphosis is a particularly strong predictor of fitness in the terrestrial life 

stage (Wilbur and Collins, 1973; Semlitsch et al. 1988). In our experiment, mass was positively 

affected by atrazine exposure, with the largest metamorphs produced at the 1 and 0.1 ppb 

levels. While it is tempting to suggest that perhaps atrazine exposure is beneficial in this way, it 

is important to remember that even if atrazine were to increase terrestrial survivorship in B. 

americanus, It is likely that any benefits would be negated in terms of reproductive fitness; 

survivorship means very little if the survivors are feminized, hermaphroditic, or chemically 

castrated . It is also likely that atrazine may not have this effect in a community context, as 

indirect effects of a chemical to the community (e.g., algal growth) can sometimes outweigh 

direct effects on the physiology of the organism (Boone and James, 2003; Boone and Semlitsch, 

2002; Relyea and Mills, 2001) . 

Increased mass as a result of atrazine exposure was likely a result of a phenomenon 

known as Itdensity-mediated compensation ." In this scenario, it is hypothesized that atrazine 

exposure decreased larval density in treatment tanks, reducing competition among the 

remaining larvae, thus allowing them to grow to larger sizes (Fig. 11). This is supported by the 

relationship between survivorship and mass in our experiment; 0.1 ppb and 1 ppb treatments 

exhibited the lowest survivorships, and also the highest masses at metamorphosis. However, 

food was not limiting in our study, as we fed the tadpoles to allow for ad libitum feeding. Thus, 

this should have reduced competition among larvae. Regardless, density-mediated 

compensation has been noted in Ambystoma barbouri larvae exposed to comparable doses of 

atrazine; however, the benefits gained from larger mass were negated by carryover effects of 
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chemical exposure into the terrestrial stage, as these larger individuals also exhibited higher 

mortality than smaller, unexposed animals months after exposure (Rohr et aI., 2006) . 

Survivorship at metamorphosis, although not affected statistically by atra,ine exposure, 

did display a trend, in that all treatment groups displayed lower survivorship values than the 

control. Furthermore, as previously mentioned, the means were most different from the 

control at the lowest concentrations. On one hand, our low mortality rates are consistent with 

other studies of amphibian survival in response to low doses of atra,ine (e.g., Hayes et aI., 

2002) . However, Storrs and Kiesecker (2004) exposed B. american us tadpoles to comparable 

levels of atra,ine (0, 3, 3D, or 100 ppb), and reported extremely high mortalities (>80%) among 

low and medium treatments. The extremely high mortalities produced in this experiment are 

not typical of atra,ine at these concentrations, but may be the result of the atra,ine source . 

Studies reporting low mortalities (such as the present and Hayes et aI., 2002) have used 

ana lytical grade atra,ine (. 99 % pure), whereas the Storrs-Kiesecker study utili,ed commercial 

grade atra,ine (.85.5% pure) . Commercial grade herbicides often contain other compounds 

(e.g., surfactants) that may increase the deadliness of the atra,ine itself. 

Although time to metamorphosis was not statistically affected, atra,ine did seem to 

lengthen the larval period, as all treatments displayed larger mean values for days to 

metamorphosis. Contrary to our results for survivorship and mass at metamorphosis, the dose­

response relationship seemed linear here, with each increaSing concentration of atrazine 

displaying a longer average larval period . This is consistent with previous findings, which have 

displayed a similar dose-speCific response with respect to this parameter (Storrs and Semlitsch, 

2008) . However, th is is not typical of atra,ine overall, which tends to display a non-monotonic 

dose-response curve (NMDRC). 
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An NMDRC means that the response reverses as concentration increases, created an 

inverted U-shaped curve; the NMDRC of atraline is displayed in Fig. 12. Responses such as this 

are typical of endocrine disrupting chemicals, and are especially alarming for amphibian 

populations in the wild (Storrs and Kiesecker, 2004) . Given the prevalence of atraline use, its 

mobility in the environment, the timing of application, and the doses required to produce 

harmful somatic and gonadal effects (Hayes et aI., 2002, 2003), it is clear that atraline is likely a 

contributor to amphibian declines in the wild . Our results confirm that the most dramatic 

somatic alterations occur in this species at very low concentrations, to which a large proportion 

of amphibians in the United States are likely exposed. 
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Figure 1 Atrazine use in the United States based on sales. Arrow indicates approxima te loca tion 
of egg'collect ion site . Reproduced from Hayes et aI., 2003. 
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Figure 2 Atrazine contamination along the Mississippi watershed in 1991 and 1992. The 
horizontal axis shows months (February, April , June, August, October, December) . The black 
dashed line indicates the EPA Drinking Water Standard, 3 ppb, while the red dotted line 
represents the lowest concentration necessary to produce hermaphrodites in the laboratory 
(0.1 ppb) . Vertica l black lines indicate the timing of amphibian larva l metamorphosis for each 
region. Reproduced from Hayes et aI., 2003. 
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Figure 3 Mean survivorship for B. americanU5 larvae . The y·axis represents the proportion of 

individuals surviving. Error bars indicate +/- 1 standard error of the mean. 
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Figure 4 Survivorship over time. Days from the beginning of the experiment are indicated on 

the x-axis, while the number of surviving individuals is represented on the y-axis (n;40) . Error 
bars represent +/- 1 standard error of the mean. 
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Figure 5 M ean mass at metamorphosis. Error bars represent +/- 1 standard error of the mean. 
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Figure 6 Mean time to metamorphosis. Error bars represent +/- 1 standard error of the mean. 
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Figure 7 Longitudinal B. americanus kidney/gonad tissue from an individua l treated with 1 ppb 
atrazine, viewed under 100x maginification, showing typical faulty orientation . The Bidders 
Organ (BO) is clearly visible, as is a large portion of the kidney (Kl. although only a small section 
of the gonad proper (GP) is present. 
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Figure 8 Longitudinal B. americanus slide, viewed under SOx magnification, showing heavily 
degraded tissue . Note the flakey appearance of the kidneys (Kl. as well as the relative lack of 
definition within the Bidders Organ (BO) . The gonad proper was not intersected in this section . 
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Figure 9 Transverse section of B. american us kidney-gonadal complex . Note the heavy 
degradation of the sample, as well as the compression of the identifiable Bidders Organ (BO) 
and kidney (K) . 
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Figure 10 Longitudinal section of B. americanus gonads, sectioned at 12 ~M and viewed under 
100x maginification. These are likely a Stage V (Ogielska and Kosutz, 2004) ovaries, indicated by 

the appearance of the ovarian cavity (DC), fat bodies (F B), and the lobed appearance of the 
upper gonad proper (G P) . Note the clea rly defined diplotene oocytes (DO) prese nt in the 
Bidders Organ (BO) . 

34 



<= o 
'p 

~« 
a. 
o 

0.. 

Stressor-induced 
(e.g., contaminant) Stressor 

:.... . •• • •• •• • •••••• •• • • 
• • 

••• • •• 
:, ••• - >/ : •••• . .... . ..... _.­•• :. ..:. 

Weak 
competition and 

low mortality 

~ 

Intense 
competition and 
high morta lity 

~ 
End of most 

studies 

• 
• •• • •• • • 

• • 

• • 
~ " _~~~"~~~~>L)_____________ ~ __ ~~~~ 

Y V 
Effects of stressor 
during exposure 

Carryover effects 
of stressor + Density-mediated 

compensation 

~------------------ ~------------------/ --v--
Net 

effect 
Effects of stressor 
during exposure + 

Carryover effects 
of stressor + 

Density-mediated 
compensation 

Figure 11 Heuristic model for the contribut ion of exposure, carryover, and densi ty-mediated 

effects of a stressor, to a stressor's net effect on survival. Figure adopted f ro m Rohr et aI., 2006. 
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ANOVA 
Source of 
Variation SS df !liS F P-value F eri! 

Between Groups 0225707 3 0075236 1 083744 0409592 4066181 
Within Groups 0555377 8 0069422 

Total 0781084 11 

Table l One-way, fixed effects ANOVA for survivorship at metamorphosis. 
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ANOVA 
Source of 
Variation SS df MS F P-value F crlt 

Between Groups 00146155 3 0004872 4 197665 0046466 4066181 
Within Groups 000926465 6 0001161 

Total 0.02390035 11 

Table 2 One-way, fixed effects ANOVA for mass at metamorphosis. 
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Tuke(s Muti!!le Comparisons 
Difference of SE of Adj usted p-

Comparison Means Difference T- Value Value 
Oppb - O.l 
ppb -0.08286 0.02783 -2.977 0.0687 
o ppb -1 ppb -0.08761 0.02783 -3.148 0.054 
o ppb - 25 ppb -0.06147 0.02783 -2.208 0.2006 
1 ppb -0.1 ppb -0.004756 0.02783 -0.1709 0.9981 
25 ppb - 0.1 
ppb 0.021392 0.02783 0.7685 0.8664 
25 ppb -1 ppb 0.02615 0.02783 0.9394 0.7855 

Table 3 Tukey's Pairwise Comparisons for mass at metamorphosis. 
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ANOVA 
Source of 
Variation SS df MS F P-value F cri t 

6.86E- 2.29E-
Between Groups 08 3 08 0.468771 0.712244 4.066181 

3.91 E- 4.88E-
Within Groups 07 8 08 

4.59E-
Total 07 11 

Table 4 One-way, fi xed effects ANOVA for time to metamorphosis. 
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