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ABSTRACT

Chromatin remodeling is an essential part of tran-
scription initiation. We show that at heat shock gene
promoters functional interactions between indi-
vidual ATP-dependent chromatin remodeling
complexes play critical role in both nucleosome
displacement and Pol II recruitment. Using HSP12,
HSP82 and SSA4 gene promoters as reporters,
we demonstrated that while inactivation of SNF2,
a critical ATPase of the SWI/SNF complex, primarily
affects the HSP12 promoter, depletion of STH1- a
SNF2 homolog from the RSC complex reduces
histone displacement and abolishes the Pol II
recruitment at all three promoters. From these
results, we conclude that redundancy between
SWI/SNF and RSC complexes is only partial and
likely is affecting different chromatin remodeling
steps. While inactivation of other individual
ATP-dependent chromatin remodeling complexes
negligibly affects reporter promoters, combinatorial
inactivation of SNF2 and ISW1 has a synergistic
effect by diminishing histone loss during heat induc-
tion and eliminating Pol II recruitment. Importantly,
it also eliminates preloading of HSF on HSP82 and
SSA4 promoters before heat shock and diminishes
HSF binding during heat shock. These observations
suggest that prior action of chromatin remodeling
complexes is necessary for the activator binding.

INTRODUCTION

Chromatin remodeling at gene promoters plays a critical
role in activation of transcription. It has been
demonstrated that these chromatin changes may range
from post-translational modifications of individual

histones to the complete disassembly and removal of
nucleosomes. The importance of chromatin remodeling
is underscored by the demonstration that at least some
transcriptional activators are dispensable for mainte-
nance of transcription, when nucleosomes are unable to
reassemble at a gene promoter (1,2). It has been proposed
recently that the elimination of promoter nucleosomes is
a critical rate-limiting step in the activation of transcrip-
tion (3).
One of the central roles in the displacement of

nucleosomes during initiation of transcription belongs to
a large class of ATP-dependent chromatin remodeling
complexes. These protein complexes are divided into
families by homology of their protein subunits: SWI/
SNF family (SWI/SNF and RSC), ISWI family (ISWI1
and ISWI2), CHD family (Chd1), INO80 family (INO80
and SWR1) (4,5). Since chromatin rearrangements play a
crucial role during initiation of transcription, some of
these complexes were suggested to play redundant roles
(6) and/or functionally interact with each other (7,8). An
involvement of individual complexes in chromatin
remodeling events had been demonstrated for a number
of specific genes, although functional interactions between
these complexes were observed only in few instances, such
as functional interactions between ISW1 and CHD1 at the
ADH1 promoter (7) between ISW1 and SWI/SNF at
Gal1-10 locus (9) and genetic interactions between ISW1,
NuA4 and SWR1 (8). The mechanistic nature of these
interactions remains largely unknown.
Heat shock genes represent an excellent model to inves-

tigate chromatin remodeling events, as upon induction
these genes undergo the most extensive and rapid
nucleosome rearrangements among known gene systems.
For instance, at the HSP82 promoter significant nucle-
osome displacement is observed already during the first
seconds after heat induction and reaches maximum
nucleosome loss after 8min (10–12). By contrast, it takes
hours to reach maximum nucleosome displacement for
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other well-studied model systems such as PHO5 and Gal
promoters (13–15). The extent of the nucleosome loss is
also significantly higher for the HSP promoters in com-
parison to other gene systems (10,15).
It has been demonstrated that chromatin changes at

gene promoters associated with transcriptional activation
are generally resilient to inactivation of individual
chromatin remodeling activities. For instance, inactivation
of ISW1, ISW2 or Chd1 individually (7), did not change
significantly expression of ADH2 gene. Even com-
binatorial inactivation of these activities had minor
effects on kinetics of expression and relative nucleosome
positioning. Similarly inactivation of SWI/SNF or Ino80
complexes individually or in combination with GCN5
(snf2 gcn5 and ino80 gcn5 double mutants) had either
no or minor kinetic effects on PHO5 expression and
promoter chromatin remodeling (6).
Chromatin remodeling at heat shock genes is not an

exception in resilience to inactivation of individual
chromatin remodeling activities. Elimination of SNF2—
a critical ATPase of SWI/SNF complex, only slightly
delays histone loss without significantly effecting histone
elimination at HSP promoters (10,12). Elimination of
Gcn5—histone acetylase of SAGA complex, affected
basal level of HSP82 expression without an effect on
induced levels (D.S. Gross personal communication). It
has been demonstrated also that activation of HSP
genes bypasses a need for such critical coactivators and
general transcription factors as TFIIA, TAF9 (a subunit
of TFIID and SAGA), Kin28 (a vital subunit of TFIIH),
Med 17 and Med22 (subunits of Mediator complex)
(16–19) and even the C-terminal domain of Pol II (20).
The resilience of chromatin remodeling and tran-
scriptional activation at HSP and other gene systems
might indicate redundancy in function of individual com-
ponents of machinery, as suggested previously (6), and
requires additional investigation.
Recently we reported the involvement of the SWI/SNF

complex in the robust chromatin remodeling at the highly
inducible HSP12, HSP82 and SSA4 gene promoters (12).
Here we present new findings indicating more prominent
involvement of the RSC complex possibly affecting
promoter Pol II loading and functional interactions
between the SWI/SNF and ISW1 complexes. Double inac-
tivation of the SWI/SNF and ISW1 complexes leads to
synergistic diminishment of histone displacement, elimina-
tion of Pol II recruitment, and abolishment of promoter
preloading of HSF—a master regulator of most HSP
genes.

MATERIALS AND METHODS

Strains and cultivation conditions

Strains utilized in this study are indicated in Table 1.
Strain YIS1 was constructed by substituting the �170 to
+5094 SNF2 region (relative to translation start codone)
with KanMX cassette PCR amplified from the pUG6
plasmid (21) according to the procedure in the above ref-
erence. Correct chromosomal integration was confirmed
by a diagnostic PCR using SNF2 (�260 to� 228) and
pUG6 primers.

Saccharomyces cerevisiae strains were cultivated at 30�C
to early log-phase in rich YPD broth supplemented with
0.04mg/ml adenine. For kinetics experiments instanta-
neous up-shift was achieved by rapidly mixing equal
volumes of 30�C culture with prewarmed 52�C medium
and then incubating with shaking at 39�C for the times
indicated. If necessary doxycycline was added to the cul-
tivation media in the concentration of 10 mg/ml and cell
cultures were grown overnight before heat shock
experiments.

ChIP analysis

Chromatin immuno-precipitation (ChIP) was performed
essentially as previously described (15) with the exception
that protein A magnetic beads were used instead of
protein A Sepharose beads to precipitate antigen-antibody
complexes. Special attention was paid to the consistency
of sonication levels of cell lysates. Before immunopre-
cipitation all samples were tested for the level of DNA
fragmentation and the mean size of DNA fragments was
always 500 bp. Antibodies specific for the following
epitopes were used: histone H3 total (from AbCam;
ab1791); Pol II - YSPT[pS]PS repeat of Pol II
C-terminal domain (CTD) (4H8 monoclonal antibody
from Upstate Biotechnology, this antibody recognizes
both phospho- and non-phospho Pol II according to the
manufacturer’s data); HSF [rabbit antibody raised and
characterized previously (22)]. Immunoprecipitated DNA
samples were used for real-time PCR with SYBR Green
dye. Since PHO5 promoter is known to contain positioned
nucleosomes (23) and its chromatin context does not
change during heat shock (15), signals for individual
gene promoters were normalized against the correspond-
ing signal derived from the PHO5 promoter (for histone
ChIPs) or the chromosome V intergenic region (in the case
of Pol II and HSF ChIPs) and to the input DNA sample.
We compared previously (12) normalization of the signal
from the HSP12 promoter to either one of these regions

Table 1. Yeast strains used

Strain Genotype Reference

FY1350 MATa leu2�0 lys2�0 ura3�0 (50)
FY1360 (�SNF2) MATa leu2�1 snf2::LEU2 his3D200 ura3-52 lys2-173R2 (50)
YTT186 (�ISW1) Mata ade2-1 can1-100 his3-11,15leu2-3,112 trp1-1 ura3-1RAD5+ isw1::ADE2 (8)
YIS1 (�ISW1�SNF2) Same as YTT186 snf2::KanMX This study
Tet-STH1 pSTH1::kanR-tet07-TATA URA3::CMV-tTA MATa his3-1 leu2-0 met15-0 Open Biosystems

1442 Nucleic Acids Research, 2010, Vol. 38, No. 5

 at B
utler U

niversity on N
ovem

ber 9, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


and found no differences. For each DNA sample at least
three consecutive dilutions of DNA were analyzed making
certain that the amplification rate was always optimal and
the change in amplification signal was proportional to
the change in the amount of DNA. In addition, controls
without DNA were always included to verify that
primer-dimer formation was not detectable or compara-
ble to the amplification from experimental samples.
Experiments were typically repeated three times or more;
error bars in the figures indicate standard deviations.

Primers for real-time PCR reactions were selected
among a significant number of primers based on the
PCR efficiency. Only those primer pairs were used that
gave an amplification rate of at least 1.9 per PCR cycle
during the linear amplification and did not produce
primer-dimers. The sequences of PCR primers used in
this study were as follows (coordinates are relative to
ATG): PHO5 (from � 214 to � 192; � 20 to � 48),
HSP12 (from � 304 to � 279 or � 337 to � 304; � 82
to � 107), HSP82 (from � 193 to � 167; � 37 to � 69),
SSA4 (from � 307 to � 279; � 70 to � 98), chromosome
V intergenic region (GCAATCAACATCTGAAGAAAA
GAAAGTAGT, CATAATCTGCTGAAAAATGGCGT
AAAT).

Western blotting

Yeast cells (50ml) were grown in defined medium to an
optical density at 600 nm of 0.7 and western blot analyses
were performed using standard techniques. Protein isola-
tions and sample preparation for SDS electrophoresis
were done as described in ref. (24). Normalization of
protein amount in samples was done by using Bio-Rad
Protein Assay kit.

RESULTS

Using promoters of three highly inducible genes—HSP12,
HSP82 and SSA4—as reporters of chromatin remodeling
during the induction of heat stress, we monitored changes
of different parameters during inactivation or depletion of
known chromatin remodeling activities. The main method
that we utilized was ChIP coupled with quantitative
real-time PCR analysis, which allows a side-by-side com-
parison of events taking place simultaneously at different
reporter promoters.

To monitor chromatin remodeling events at the
indicated promoters, we used anti-H3 antibody raised
against the C-terminal region of H3 (amino acids
125–135). This region is not known to be post-
translationally modified, allowing a measure of total
histone H3 abundance. Utilization of this antibody for
quantification of a change in total H3 has been
demonstrated previously by others (13,25). The results of
such experiments are traditionally reported as a drop
(1–0% or 100–0%) in histone content during gene activa-
tion. This form of presentation restricts analysis of the
data, since the closer the values are to zero, the more
difficult it is to see fine differences. Therefore we have
chosen to present the results as an inverse value, which

represents the degree of histone displacement and
changes from 1 to 1. This presentation format better
conveys fine differential chromatin remodeling and has
been utilized by us previously (11). While having the
above-mentioned advantages, this form of presentation
has a tendency to deemphasize significant histone losses
(50–75% of initial level) seen in most of the mutants
bearing inactivations of individual chromatin remodeling
activities [(6,11,12) and discussed below.

Critical role of RSC complex in chromatin remodeling
at heat shock gene promoters

As we showed previously and confirmed with our new
data [Figure 1A and ref. (12)], the inactivation of the
SNF2—the ATPase subunit of SWI/SNF complex—
leads to a mild delay of the histone H3 loss at the
HSP82 and SSA4 promoters, while strongly affecting
the HSP12 promoter. To test if other ATP-dependent
chromatin remodeling complexes are involved and
possibly functioning in redundant pathways at the
HSP82 and SSA4 promoters, we investigated RSC
complex, whose ATPase subunit STH1 is a paralogue of
SNF2 (5,26,27). Since inactivation of STH1 is lethal, we
employed a conditional knockdown yeast strain bearing a
tetracycline regulatable element at the promoter of the
STH1 gene. In this strain, the addition of doxycycline
(a stable homolog of tetracycline) shuts down the
expression of STH1 (Figure 1C). The results depicted in
Figure 1B indicate that inactivation of STH1 expression
affects all three promoters in two ways. First, the extent
of histone H3 loss is diminished, and second, it takes
a longer time to reach maximum of the histone displace-
ment level. Since growth of the tet-STH1 strain in
presence of doxycycline does not result in lethality as
revealed by the complete deletion of the STH1 gene, but
rather to a slow growing phenotype (Figure 1D), we
conclude that results of Figure 1B reflect a depletion
rather than complete elimination of STH1. Thus
complete inactivation might have an even stronger effect
on chromatin remodeling possibly leading to a complete
elimination of histone displacement at all three reporter
promoters.
Since nucleosome displacement at the promoter is often

a critical step for transcription initiation, we wanted to test
if crippling of chromatin remodeling by STH1 knockdown
had any effect on the recruitment of the RNA polymerase
II (Pol II). To do this experiment we have used an
antibody that recognizes both phosphorylated and
unphosphorylated forms of Pol II (see ‘Materials and
methods’ section). Our ChIPs therefore are able to
provide information about transcription initiation events
at specific promoters. This approach has an advantage of
not having to deal with cross-reactivity issues of probes in
canonical northern blot experiments or RT-PCR and not
having to deal with the specific mRNA half life. The
restriction of this approach is that it does not necessarily
give a measure of completed transcription, but rather is a
measure of the transcription initiation complex assembly.
The data of Figure 2 indicates that all three promoters
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failed to attract Pol II when the expression of STH1 is shut
down by the presence of doxycycline. The effect of STH1
inactivation, even though it is not a complete elimination,
is drastically stronger than the effect of SNF2 inactivation
on Pol II recruitment at the same reporter promoters
described previously (12).

ISW1 complex affects kinetics of chromatin remodeling

Considering that two ATP-dependent chromatin
remodeling complexes—SWI/SNF and RSC—influence
chromatin remodeling events at the HSP12, HSP82 and
SSA4 promoters, we wanted to test if other ATP-
dependent complexes are involved. We systematically
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tested the effects of inactivation of critical subunits of
known chromatin remodeling complexes and found that
individual inactivations did not influence significantly the
nucleosome displacement events taking place at the
reporter promoters. However, one relatively noticeable
effect we observed was with the deletion of ISW1, which
caused a delay in reaching maximum histone loss at
HSP12 and SSA4 promoters or longer maintenance of
histone displacement at the HSP82 promoter (Figure 3),
similar to what was observed for the HSP82 and SSA4
promoters in the DSNF2 strain (Figure 1A).

SWI/SNF and ISW1 complexes cooperate functionally

Since the effects we observed were similarly subtle
(Figure 1A and 3) and were reflected in a delay of
chromatin remodeling, we wanted to test if SWI/SNF
and ISW1 complexes were functionally redundant. By
inactivation of both SNF2 and ISW1, and analyzing
kinetics and the extent of histone loss (Figure 4A) we
found a synergistic effect—HSP82 and SSA4 reporter

promoters showed drastically lower levels of chromatin
remodeling than the histone loss observed after inactiva-
tion of SNF2 and ISW1 individually (Figure 1A and 3).
For the HSP12 promoter, as we reported pereviously (12),
loss of SNF2 alone was enough to abolished chromatin
remodeling.
Since we observed that significant diminishment of

chromatin remodeling in case of STH1 knockdown elim-
inates recruitment of Pol II (Figure 2) we wanted to test if
combinatorial inactivation of SNF2 and ISW1 has the
same effect on Pol II. Figure 4B shows that Pol II was
absent at all three reporter promoters during the time
course of heat induction. These results underscore the
importance of proper nucleosome displacement for tran-
scription initiation.

Binding of HSF at HSP promoters depends on function
of ISW1 or RSC complexes

Another important factor determining both chromatin
remodeling events and transcription initiation complex
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assembly is activator binding to the promoter. For the
majority of heat shock genes the principal activator is
HSF, although some stress genes are regulated with par-
tially redundant Msn2 and Msn4 activators (28). There is
a partial overlap between the sets of genes regulated by

HSF and Msn2/4, with HSP12 being an example of a gene
under the influence of both activator systems with Msn2/4
playing a dominant role (11,28). To test if activator
binding is affected by crippling chromatin remodeling
machinery, we used HSF ChIPs in the DISW1 and
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Figure 5. Preloading of HSF at the HSP82 and SSA4 promoters depends on the function of SWI/SNF and ISW1 complexes. (A) ChIPs utilizing
antibody against yeast HSF were performed in the DISW, DSNF2 DISW1 or isogenic parental (WT) strain. The promoter analyzed is indicated in the
upper left corner of each panel. y-axis: abundance of HSF. x-axis: time after heat shock (0–64min.). All real-time PCR values were normalized
relative to the input and to the background values of the PHO5. Values represent mean±SD (n� 3). (B) Similar experiments as in panel A were
performed in the strain expressing STH1 under tet-dependent promoter in the absence (No Dox) or in the presence (+Dox) of doxycycline.
(C) Western blotting performed with proteins isolated from the indicated strains. For each strain loading was normalized to the total protein level.
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DSNF2/DISW1mutant strains and compared it to the WT
(Figure 5). The results of these experiments show that
binding of HSF to the HSP12 promoter was eliminated,
while binding to the HSP82 and SSA4 promoters was
reduced in both DISW1 and DSNF2/DISW1 strains.
Moreover, while HSP82 and SSA4 promoters are
characterized by significant preloading of HSF before
heat shock (11), the DISW1 and DSNF2/DISW1 strains
showed no binding of HSF before heat shock at these
promoters. These data suggest that the ISW1 inactivation
is likely affecting nucleosome dynamics by diminishing
activator binding to the promoters.

To test if activity of RSC complex similarly affects
activator loading at the reporter HSP promoters we per-
formed HSF ChIPs in the tet-STH1 strain. We found that
the depletion of STH1 by shutting down the STH1
promoter with doxycycline affects HSF binding to the pro-
moters. Considering, as we argued above comparing
survivability of the tet-STH1 strain and lethality of the
STH1 deletion, that STH1 is only severely depleted
(Figure 1C) but not completely eliminated, the effect of
complete inactivation of RSC might be even stronger. The
lower overall abundance of HSF at the reporter promoters
(Figure 5B—no Dox) in comparison with the WT strain
(Figure 5A) can be explained by lower STH1 expression
even without doxycycline (Figure 1C). These results again
suggest that chromatin remodeling might be an important
factor for activator binding.

Since chromatin remodeling might be gene specific, it
can change the balance between proteins thus affecting
relative HSF level in the cell. To test this possibility we
performed western blotting analysis (Figure 5C), which
showed that there is no significant change in HSF level
during inactivation of either chromatin remodeling
activity. That might indicate that chromatin remodeling
is not so critical for the constitutive expression of HSF1
gene.

DISCUSSION

Related SWI/SNF and RSC complexes play partially
overlapping but not redundant function at heat shock
gene promoters

In this study we tested the involvement of known
ATP-dependent chromatin remodeling complexes in
rapid and extensive nucleosome displacement at the
highly inducible yeast heat shock gene promoters. We
observed a significant difference in the dependence of
reporter promoters on the activity of particular
complexes. Inactivation of specific complexes generally
at least for the PHO5 promoter had either no or mild
gene specific effects (6), which might suggests a redun-
dancy in functional involvement. By far the strongest
effect we have detected was with the depletion of STH1.
Only in this case the depletion of the RSC complex affects
all three reporter promoters which is reflected in
diminishment of chromatin remodeling and more
importantly in the elimination of Pol II recruitment
(Figures 2 and 3). These data are in agreement with the
reported association between the Rcs4 component and

Rpb5, a conserved subunit shared by all three nuclear
RNA polymerases (29). Although the involvement of
RSC complex in chromatin remodeling at gene promoters
was reported previously (30), we have demonstrated for
the first time that RSC complex is critical for chromatin
remodeling and Pol II recruitment at the HSP promoters.
The idea of redundancy in the action of chromatin

remodeling complexes contradicts to the different
outcomes of SWI/SNF and RSC inactivation. The RSC
and SWI/SNF complexes are very related complexes with
five shared subunits and critical ATPase subunits SNF2
and STH1 sharing some structural motifs (26,31–33). Yet
we observed significant differences in effects of inactiva-
tion of SNF2 and STH1. The deletion of SNF2 has an
adverse effect on both chromatin remodeling and Pol II
recruitment at the HSP12 promoter, while the effect on
the HSP82 and SSA4 is very mild, comprising a slight
diminishment and a delay of both processes (12). This
promoter specificity likely stems from the dominance of
promoters with different activators—HSF for the HSP82
and SSA4 promoters, and Msn2/4 for the HSP12
promoter (12,28). Additionally, while HSP82 and SSA4
promoters are partially occupied with HSF before heat
shock, the HSP12 promoter likely is free of an activator
and requires assistance from the SWI/SNF complex (11).
The situation is different for the RSC complex, since the
inactivation of this complex similarly affects all three
reporter promoters. These effects might be a result of asso-
ciation of RSC with Pol II and not due to recruitment by a
gene-specific activator. This general action of the RSC
complex is consistent with it being the only essential
ATP-dependent chromatin remodeler.

Cooperation between SWI/SNF and ISW1 complexes

A synergistic effect of SNF2 and ISW1 inactivation
observed in our study is another indication of functional
interactions between ATP-dependent chromatin
remodeling complexes. Based on DNA microarray
results, the ISW1 deletion has only subtle effects resulting
in 1.5–2-fold change in gene expression level (34). This
subtlety suggests that ISW1 might be involved in some
form of functionally interactions with other complexes.
For example, functional interaction between ISW1 and
CHD1 is required for ADH2 activation (7), and functional
interactions between ISW1 and SWI/SNF is necessary for
transcriptional memory at the yeast Gal1-10 gene cluster
(9). In addition, tripartite genetic interactions between
ISW1, NuA4 and SWR1 complexes are important to
repress Msn2/4 regulated genes (8).
An involvement of SWI1 in chromatin remodeling has

been demonstrated for the HIS3 and SER3 promoters
(35,36). Importantly, in both cases mild effects of SWI1
inactivation correlated with independent requirement of
the SWI/SNF complex for chromatin remodeling. Here
we report for the first time that inactivation of both
SNF2 and ISW1 has a strong synergistic effect, resulted
in diminishment of histone loss and elimination of Pol II
recruitment at all three reporter HSP promoters. Since it
has been demonstrated that SWI/SNF complex is
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recruited to gene promoters by gene specific activators
(37), and ISW1 is required for phosphorylation of Pol II
CTD, and influences elongation-phase of transcription
(38), it is reasonable to hypothesize that cooperation
between SWI/SNF and ISW1 complexes stems from
chromatin remodeling necessary for both promoter
opening and Pol II firing.
One possible mechanistic explanation for cooperation

between SWI/SNF and ISW1 complexes can be based
on the reported differences in modes of nucleosome
remodeling for these two complexes. While SWI/SNF
complex causes disordered nucleosome positioning,
thereby promoting transcription factor binding and gene
activation (39), ISWI type remodelers space nucleosomes
with regular distance from one another (40,41).
Considering these mechanistic differences, we hypothesize
that the SWI/SNF complex creates and maintains an
original nucleosome free window distorting uniform
nucleosome spacing, while ISW1 by equilibrating the dis-
tances between nucleosomes propagates nucleosome
movement along the entire gene.
Although we cannot formally exclude indirect effects

caused by inactivation of subunits of chromatin
remodeling complexes, there are data which contradict
this idea. First, we and others previously showed that
SWI/SNF complex is directly recruited the heat shock
gene promoters during heat induction (10,12,42). The
RSC complex also was shown to be directly involved in
chromatin remodeling at HSP and other promoters (43).
Physical interactions between RSC and Pol II (29) also
suggest that the RSC complex is directly involved at
least in single nucleosome events at gene promoters (30).

Chromatin remodeling by action of either ISW1 or RSC
complexes is necessary for preloading of HSF at the
HSP promoters

Another important aspect of our study is a demonstration
that preliminary HSF binding to the cognate promoters is
dependent on the function of chromatin remodeling
complexes. While in higher eukaryotes, HSF binds to cor-
responding promoters in a heat shock dependent manner,
in yeast S. cerevisiae it was originally proposed that this
binding is constitutive (44–46). Later investigation showed
that yeast HSF at least partially binds to gene promoters
in the heat inducible manner (11,47–49). But even these
studies showed that certain HSP promoters, including
HSP82 and SSA4, are partially occupied with HSF
before heat shock and the abundance of HSF only
slightly increases upon heat shock (11,49). Here we show
that occupancy of HSP82 and SSA4 promoters with HSF
depends on the function of both ISW1 and RSC
complexes, as depletion or elimination of either one
causes greatly decreased occupancy. While binding of
HSF at the HSP82 and SSA4 promoters was not
affected significantly in the DSNF2 (12), the binding of
HSF before heat shock to all three reporter promoters
was absent in the DISW1 and DSNF2DISW1 strains and
during depletion of STH1 and increased upon heat shock
only slightly. Our data suggest that a pre-emptive action
of chromatin remodeling complexes is necessary for

activator binding to the promoters at least for HSF in
case of some HSP promoters. Perhaps this action is
encompassed in directing consistent nucleosome
movement creating a ‘window’ of opportunity for
activator binding. In sum, our experimental data suggest
that chromatin remodeling is a critical part of activation
of HSP genes. Crippling of chromatin remodeling
impedes two essential steps of gene activation—binding
of the activator molecule and assembly of the transcrip-
tion initiation complex.
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