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Chromatin remodeling at promoters of activated genes spans from mild histone modifications to outright
displacement of nucleosomes in trans. Factors affecting these events are not always clear. Our results indicate
that histone H3 acetylation associated with histone displacement differs drastically even between promoters of
such closely related heat shock genes as HSP12, SSA4, and HSP82. The HSP12 promoter, with the highest level
of histone displacement, showed the highest level of H3 acetylation, while the SSA4 promoter, with a lower
histone displacement, showed only modest H3 acetylation. Moreover, for the HSP12 promoter, the level of
acetylated H3 is temporarily increased prior to nucleosome departure. Individual promoters in strains ex-
pressing truncated versions of heat shock factor (HSF) showed that deletion of either one of two activating
regions in HSF led to the diminished histone displacement and correspondingly lower H3 acetylation. The
deletion of both regions simultaneously severely decreased histone displacement for all promoters tested,
showing the dependence of these processes on HSF. The level of histone H3 acetylation at individual promoters
in strains expressing truncated HSF also correlated with the extent of histone displacement. The beginning of
chromatin remodeling coincides with the polymerase II loading on heat shock gene promoters and is regulated
either by HSF binding or activation of preloaded HSF.

Chromatin changes at promoters of eukaryotic genes play an
essential role in regulation of transcription. These changes can
range from posttranslational modifications of single amino
acid residues in histones to more widespread histone modifi-
cations and finally to nucleosome displacement from promot-
ers. Although assembly of the transcription initiation complex
is antagonized by the presence of nucleosomes at gene pro-
moters, full nucleosome displacement from the promoter is not
always observed. Nucleosome displacement events are usually
accompanied by posttranslational modifications of histones.
These posttranslational modifications, often occurring in a cas-
cade manner influencing one another, lie at the foundation of
the “histone code” hypothesis (25, 46). The most heavily char-
acterized histone modifications are acetylation of lysines pro-
duced by the action of histone acetyltransferase (HAT)-con-
taining complexes, such as SAGA, ADA, NuA3, NuA4, and
others. The histone acetylation often leads to the loss of some
histone-DNA bonds and to the formation of a distinct chro-
matin surface recognized by chromatin-remodeling coactiva-
tors bearing bromodomains (10, 22). These coactivators often
belong to the class of ATP-dependent chromatin remodeling
complexes, which include such multisubunit complexes as SWI/
SNF, RSC, ISWI, and others. These chromatin remodeling
complexes use the energy released from ATP hydrolysis to
destabilize and finally push away promoter nucleosomes either
in cis along the DNA (15, 31) or in trans, completely detaching
histones from DNA (5, 28). It is not always clear if histone
modifications are required for chromatin remodeling or vice
versa, because different orders of recruitment of chromatin-

remodeling and histone-modifying activities have been re-
ported (1, 8, 11, 29, 41).

In cases where nucleosomes are removed from gene pro-
moters, the comparison of experimental data for different gene
promoters reveals a dissimilar extent of nucleosome displace-
ment. In such well-documented cases as PHO5 and GAL pro-
moters, completion of the nucleosome displacement process
takes at least an hour and is in a range of 2- to 10-fold histone
depletion relative to the initial level (13, 30, 41). The most
remarkable example of extensive and fast chromatin remodel-
ing so far described is nucleosome displacement at the HSP82
gene promoter. It starts to be detectable within 45 seconds of
heat shock (52), and relative histone displacement is higher
than for other genes (13, 30, 41). Similarly to the PHO5 pro-
moter, a mild and transient increase in histone acetylation is
detected at the HSP82 promoter prior to major nucleosome
displacement (52). Yet, it is not clear if this histone acetylation
is limited to the initial stages of chromatin remodeling or
persists throughout the whole process and if the degree of
histone acetylation changes.

Heat shock genes are primarily regulated by the broadly
conserved heat shock factor (HSF), although regulators such
as Msn2/4 and others were also shown to be involved for some
HSP genes (6, 16). Yeast HSF, encoded by the essential HSF1
gene, contains two activation regions situated at the N and C
termini of the HSF molecule. These activation domains differ
in their relative activation potentials as well as in their func-
tionalities during the time course of heat stress (38, 43). The
activity of HSF is regulated via several distinct pathways, in-
cluding monomer-trimer transition (37), phosphorylation, and
other posttranslational modifications (21, 23, 45), as well as via
repression by molecular chaperones interacting with HSF, thus
blocking their own production (37, 47). It is assumed that the
robust nucleosome displacement at heat shock gene promoters
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is regulated by HSF. Surprisingly, it was demonstrated that
HSF bypasses in its function a number of critical coactivators
and general transcription factors, such as TFIIA, TAF9 (a
subunit of TFIID and SAGA), Kin28 (a vital subunit of
TFIIH), Med 17, and Med22 (subunits of the Mediator com-
plex) (3, 7, 33, 35), and even the C-terminal domain of poly-
merase II (Pol II) (34). Thus, the mechanisms of nucleosome
displacement and initiation of transcription at heat shock gene
promoters are not fully understood and may have unique char-
acteristics.

In this study, by performing kinetics experiments we show
that heat shock gene promoters differ from each other in the
extent and timing of nucleosome displacement and histone H3
acetylation. While it has been previously shown that nucleo-
some displacement is preceded by transient histone acetylation
at PHO5 (41) and HSP82 (52) promoters, we demonstrate that
nucleosome displacement at HSP12, HSP82, and SSA4 pro-
moters is accompanied by sustained and increasing acetylation
of histone H3. The extent of H3 acetylation often correlates
with the extent of chromatin remodeling. This correlation is
observed not only between different genes but also for individ-
ual genes in strains bearing different truncations of the HSF
activation domains. We also show that HSF is preloaded to
HSP82 and SSA4 promoters in an inactive form, but not to the
HSP12 promoter, and is activated upon heat shock mediating
chromatin remodeling and Pol II recruitment.

MATERIALS AND METHODS

Yeast strains. All Saccharomyces cerevisiae strains used in this study are de-
rived from PS128 (MATa ade2-1 trp1-1 can1-100 leu2,3-112 his3-11 ura3
hsf1�2::LEU2 carrying HSF1 on a YCp50-based plasmid) (43). Truncated ver-
sions of HSF1 in a pNC160-based plasmid (43) were transformed into the PS128
strain, and the original plasmid containing full-size HSF1 and the URA3 marker
was shuffled out by cultivation on 5-fluoroorotic acid-containing medium. The
strain expressing myc-tagged H4 was obtained by transformation of PS128 with
the plasmid pNOY436 (27).

Cultivation conditions. Saccharomyces cerevisiae strains were cultivated at
30°C to early log phase in rich yeast extract-peptone-dextrose broth supple-
mented with 0.04 mg/ml adenine. Strains transformed with pNOY436 were
grown similarly but in synthetic complete medium lacking tryptophan. For ki-
netics experiments, instantaneous upshift was achieved by rapidly mixing equal
volumes of a 30°C culture with prewarmed 52°C medium and then incubating
with shaking at 39°C for the times indicated.

ChIP analysis. Chromatin immunoprecipitation (ChIP) was performed essen-
tially as previously described (13) with the exception that protein A-magnetic
beads instead of protein A-Sepharose beads were used to precipitate antigen-
antibody complexes. Special attention was paid to the consistency of equal levels
of sonication of cell lysates. Before immunoprecipitation, all samples were tested
for the level of DNA fragmentation, and the mean size of DNA fragments was
always 500 bp. Antibodies specific for the following epitopes were used: histone
H3 total (ab1791; AbCam); myc (monoclonal antibody 9E10; Santa Cruz Bio-
technology), diacetyl histone H3 (K9 and K14) (06-599; Upstate Biotechnology),
acetyl histone H4(K16) and tetra-acetyl H4 (06-866; Upstate Biotechnology), Pol
II-YSPT[pS]PS repeat of the Pol II C-terminal domain (the 4H8 monoclonal
antibody recognizes both phospho- and nonphospho-Pol II; Upstate Biotechnol-
ogy), HSF (rabbit antibody raised and characterized by us previously [12]).
Immunoprecipitated DNA samples were used for real-time PCR with SYBR
Green dye, and signals for individual gene promoters were normalized against
the corresponding signal derived from the PHO5 promoter or from the chromo-
some V intergenic region (in the case of Pol II ChIPs) and to input and then
against the non-heat-shock sample (0�), arbitrarily chosen as 1. Because we
observed the loss of total histone signals upon heat shock, we also calculated the
change in the acetylated histone/total histone ratio as acetylated histone abun-
dance divided by total histone abundance, where relative abundance is an inverse
value of relative displacement. For each DNA sample at least three consecutive
dilutions of DNA were analyzed, making sure that the amplification rate was

always optimal and the change in amplification signal was proportional to the
change in the amount of DNA. In addition, no-DNA controls were always
included, making sure that the primer-dimer formation was not detectable or
never was comparable to the amplification from experimental samples. Experi-
ments were typically repeated three times; error bars in the figures show standard
deviations.

Primers for real-time PCRs were selected from a significant number of primers
based on the PCR efficiency. Only those primer pairs were used that gave an
amplification rate of at least 1.9 per PCR cycle during the linear amplification
and did not produce primer-dimers. The sequences of PCR primers used in this
study were as follows (coordinates are relative to ATG): PHO5 (�214 to �192,
�20 to �48), HSP12 (�304 to �279, �82 to �107), HSP82 (�193 to �167, �37
to �69), SSA4 (�307 to �279, �70 to �98), chromosome V intergenic region
(GCAATCAACATCTGAAGAAAAGAAAGTAGT, CATAATCTGCTGAA
AAATGGCGTAAAT).

RESULTS

Differential displacement of histones from heat shock gene
promoters. Upon induction of transcription, nucleosomes are
displaced from heat shock gene promoters (9, 13, 52) as well as
from PHO5 (5, 28) and Gal promoters (30). In most cases this
was demonstrated using the ChIP technique and confirmed by
other techniques. In these reports it was also demonstrated
that the loss of histone signals during transcriptional induction
is not likely the result of epitope masking affecting interpreta-
tion of ChIPs. In our experiments we performed time course
experiments coupled with histone ChIP to test whether histone
displacement occurred with similar kinetics and to a similar
degree among highly related heat shock genes. The three genes
analyzed, HSP12, HSP82, and SSA4, represent typical genes
that are greatly induced upon heat shock. These genes express
components of the molecular chaperone machinery of the cell.
Yet, these genes exhibit interesting and important differences
in their regulation. All of them are regulated by the principal
transcriptional activator of heat shock genes, HSF. However,
the promoters of these genes possess differently organized heat
shock elements (HSEs), and additional regulators, such as Msn
2/4, are involved in regulation of HSP12 (6, 16). To monitor
chromatin-remodeling events at indicated promoters, we used
anti-H3 antibody raised against the C-terminal region of H3
(amino acids 125 to 135). This region is not known to be
posttranslationally modified, thus allowing a measure of total
histone H3 abundance. Utilization of this antibody for quan-
tification of a change in total H3 was done previously by others
(30, 32). The results of such experiments are traditionally pre-
sented as a drop (1 to 0, or 100% to 0%) in histone content
during gene activation. This form of presentation restricts
analysis of the data, since the closer the values are to 0 the
more difficult it is to see fine differences. We decided to
present results as an inverse value, which represents the degree
of histone displacement and changes from 1 to �, thus better
conveying fine differential chromatin remodeling. Figure 1A
shows that, although all three gene promoters tested showed
clear evidence of chromatin remodeling, the extent of histone
displacement and kinetic profiles of this process are different.
The HSP12 promoter showed the highest level of histone H3
loss, reaching a maximum of approximately 40-fold depletion
relative to the non-heat-shock level, while the HSP82 and SSA4
promoters reached 18- and 13-fold depletion levels, respec-
tively. Note that before heat shock all promoters showed oc-
cupancy with histone H3 equal to that of the PHO5 promoter,
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known to be fully occupied with nucleosomes under these
conditions (Table 1). Another difference was in the timing of
histone displacement. The HSP12 promoter was dormant for 2
minutes and started to show some changes only during the
fourth minute after the temperature shift. Contrary to this, the
HSP82 promoter showed threefold displacement of H3 after
just 30 seconds of heat shock, which is consistent with the
results obtained for this gene previously (52). The SSA4 pro-
moter more closely resembled the HSP12 promoter, with chro-

matin changes lagging until the second minute after heat
shock. Time course experiments coupled with ChIP thus indi-
cate that the degree of chromatin remodeling and kinetic pro-
files of histone displacement are different for each heat shock
gene promoter.

A higher level of chromatin remodeling often correlates with
a higher level of histone H3 acetylation at HSP promoters. We
next sought to determine if the acetylated form of histone H3
follows the same kinetic profile of loss as total H3 displace-

FIG. 1. Kinetics of histone H3 displacement at heat shock gene promoters. (A) Fold displacement of histone H3 ( y axis) over time (0 to 64 min)
(x axis) relative to the non-heat-shock level (0�), which was arbitrarily set at 1. All real-time PCR values were normalized relative to the PHO5
promoter, which is known to contain positioned nucleosomes that do not change during heat shock (13). Values represent means � standard
deviations (n � 3). (B) The same experiment as in panel A, except ChIPs were done with antibody raised against the acetylated form of H3.
(C) Relative change of acetylated H3 (AcH3)/H3 abundance ( y axis), calculated from the data in panels A and B. AcH3/H3 abundance � H3
displacement/AcH3 loss. (Note: the displacement [loss] value is an inverse value of abundance.)
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ment. If for an individual gene the acetylated form of H3
showed an equivalent degree of loss with similar kinetics as
total H3 displacement, it would indicate that there is no change
in histone acetylation. It would also indicate that acetylated
H3, which is a fraction of the total H3 pool, is lost in the same
manner as total H3. However, as Fig. 1B shows, there is a clear
difference in the profiles. The HSP12 promoter, while showing
maximal displacement for total H3 (Fig. 1A), shows only mod-
est loss of the acetylated form of H3 (Fig. 1B). At the same
time, the SSA4 promoter shows a much higher loss of acety-
lated H3, which is equivalent to the extent of total H3 displace-
ment level for this gene (note difference in scales between
panels A and B). The HSP82 promoter, while similar to HSP12
in terms of the maximum level of acetylated H3 loss (Fig. 1B),
is weaker than HSP12 for displacement of total H3 (Fig. 1A).
It is important to note that signals for all three genes are
generated from the same immunoprecipitated samples, thus
rendering it unlikely that immunoprecipitation by anti-
acetyl-H3 antibody was less efficient for HSP12 or HSP82 in
comparison with SSA4. The observed difference between the
degree of displacement for total and acetylated forms of H3
indicates that the H3 acetylation was significantly different for
these genes. In fact, the lower level of displacement of acety-
lated H3 compared to total H3 at the HSP12 and HSP82
promoters indicates that the fraction of acetylated H3 relative
to total H3 is increased for these genes during the time course
of activation after heat shock.

Knowing the relative fold displacement for the total and
acetylated forms of H3, which is an inverse value of relative
abundance, we can calculate the change in the ratio of the
acetylated form to total H3 (Fig. 1C). Since loss of the acety-
lated form of H3 is relatively minor in comparison to the
displacement of total H3, as in the case of HSP12, the acety-
lated H3/total H3 ratio is higher than 1, which was arbitrarily
chosen as the value of the non-heat-shock sample (0�). For the
HSP12 promoter the fraction of acetylated H3 that remains on
the promoter or in its vicinity steadily increases during the time
course of heat shock. Enrichment of acetylated H3 reaches a
maximum of 20-fold after 30 min of heat shock and recedes

afterward. For the HSP82 promoter, enrichment of acetylated
H3 is much less, not exceeding fivefold. For the SSA4 promoter
acetylated H3 enrichment is minimal, reaching just threefold
after 32 min of heat exposure. For all three promoters the
maximum acetylated H3/total H3 ratio is shifted in comparison
with the total H3 displacement profile, indicating that it took
approximately 16 min longer to reach maximum relative acet-
ylation in comparison with the maximum total H3 displace-
ment. Comparing all three promoters we can conclude that the
relative change in acetylation level of histone H3 was highest
for the HSP12 promoter, which shows the highest level of
chromatin remodeling, and was smallest for the SSA4 pro-
moter with the lowest level of chromatin remodeling.

To test whether the degree of histone acetylation of histone
H4 is similar to that of H3 in the nucleosome, we did analogous
ChIPs utilizing anti-H4 antibodies. To test the kinetics of dis-
placement of total H4, we used a strain expressing a myc-
tagged version of H4 (27, 52) and used an antibody against the
myc epitope. The reason for utilization of myc-tagged H4 is the
unavailability of antibodies that recognize a region of histone
H4 not modified in vivo. Figure 2A shows that the profiles of
H4 displacement are similar to those of H3, with the HSP12
promoter showing the highest level and HSP82 and SSA4 pro-
moters showing lower and approximately equal levels of H4
displacement. The absolute values for relative H4 displace-
ment are lower than those of H3, possibly because of the
differences in cross-linking abilities of H3 and H4 during the
ChIP procedure. Contrary to what is observed for the acety-
lated form of H3, loss of the acetylated form of H4 almost
parallels the kinetic profiles of total H4 for all three genes,
indicating that the acetylation level of H4 did not change
significantly. Accordingly, the ratio of acetylated H4 to total
H4, showing the relative change in the acetylation level of
histone H4, did not change significantly with heat shock (Fig.
2C). The HSP12 promoter revealed a minor two- to threefold
increase in H4 acetylation, while HSP82 and SSA4 promoters
did not display any change. Similar results, showing parallel
changes in total and acetylated forms of H4 during the dis-
placement process, were obtained with antibodies raised
against acetylated K16 (Fig. 2) and the tetra-acetylated form of
H4 (data not shown). Comparison of the results for H3 and H4
indicates that the observed effect of histone acetylation during
displacement of nucleosomes is more specific to H3. A similar
effect of higher acetylation of H3 in comparison to H4 during
nucleosome displacement was reported for the Gal10 pro-
moter (30).

Deletion of activation domains in HSF drastically affects
chromatin remodeling and histone H3 acetylation at heat
shock gene promoters. To test whether the correlation be-
tween the degree of histone H3 displacement and the acetyla-
tion level of H3 is dictated by the features of individual pro-
moters recruiting different sets of transcription factors or is
related to the function of HSF as a master regulator of heat
shock genes, we utilized yeast strains expressing HSF contain-
ing deletions of its activation regions. This analysis is especially
important for the HSP12 promoter, since the involvement of
other activators, such as Msn2 and Msn4, was demonstrated
for this gene (6, 16). Figure 3A demonstrates that the deletion
of either one of the two activation regions in HSF [strains
expressing HSF(1-424) or HSF(1-40�147-833)] has a modest

TABLE 1. Abundance of histones at indicated promoters before
heat shock, relative to the PHO5 promoter

Promoter Strain expressing
construct

Abundancea

Total H3 Acetylated
H3

HSP12 WTb HSF 1.1 � 0.3 0.7 � 0.1
HSF(1-424) 1.3 � 0.2 0.6 � 0.2
HSF(1-40�147-833) 0.8 � 0.2 0.9 � 0.2
HSF(1-40�147-583) 1.3 � 0.2 0.9 � 0.1

HSP82 WT HSF 0.8 � 0.1 0.7 � 0.1
HSF(1-424) 0.7 � 0.2 0.6 � 0.1
HSF(1-40�147-833) 0.9 � 0.1 1.1 � 0.3
HSF(1-40�147-583) 1.1 � 0.1 0.8 � 0.1

SSA4 WT HSF 0.8 � 0.1 1.1 � 0.1
HSF(1-424) 1.1 � 0.2 1.1 � 0.1
HSF(1-40�147-833) 0.8 � 0.2 1.1 � 0.1
HSF(1-40�147-583) 1.0 � 0.1 1.2 � 0.2

a Values (means � standard deviations) were obtained by normalization of the
real-time PCR signal of the specified promoter to the signal of the PHO5
promoter and to the input signal.

b WT, wild type.
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effect on the total histone H3 displacement at the HSP12
promoter. Deletion of both HSF activation regions in the
strain expressing HSF(1-40�147-583) has the strongest effect,
decreasing the maximum H3 displacement from 40-fold to
8-fold. At the same time, profiles of loss for the acetylated form
of H3 (Fig. 3B) were not affected as drastically. Only the strain
expressing the maximally truncated HSF showed a twofold
drop in comparison with the strain expressing wild-type HSF.
Importantly, for all four strains tested the HSP12 promoter
showed a decrease in the loss of the acetylated form of H3
below 1 at 2 minutes after heat shock. As the extent of loss is
an inverse value of relative abundance, the drop in displace-
ment below the initial non-heat-shock level means that the

level of H3 acetylation was actually higher at this point in time
than before heat shock. At this time point the displacement of
total H3 had barely started. A burst of histone acetylation prior
to nucleosome displacement was reported previously for the
PHO5 and HSP82 genes (40, 52) and is considered an impor-
tant step in nucleosome displacement. Our observation for the
HSP12 promoter suggests that the onset of histone H3 acety-
lation precedes the beginning of nucleosome displacement by
several minutes. Comparison of the ratios of acetylated H3 to
total H3 for the four strains (Fig. 3C) shows that it was highest
for the strain expressing wild-type HSF, dropped for the strains
expressing either C- or N-terminally truncated HSF, and was
significantly diminished for the strain expressing HSF depleted

FIG. 2. Kinetics of histone H4 displacement at heat shock gene promoters. An experiment was performed as for Fig. 1, except ChIPs were done
with anti-H4 antibodies. A strain expressing a myc-tagged version of H4 was utilized. (A) Displacement of total H4 (anti-myc antibody). (B) Loss
of acetylated H4 (anti-tetra-acetyl H4 antibody). (C) Change in the acetylated H4 (AcH4)/total H4 ratio, calculated from data of panels A and
B, as described in the Fig. 1 legend.
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of both activation regions. Thus, the histone H3 acetylation
level for the HSP12 promoter was highest for the strain with
the highest level of histone displacement (wild type) and lowest
for the strain expressing HSF(1-40�147-583), with only a mod-
est level of total H3 displacement. For all four strains, the
maximum H3 acetylation level was reached with a delay of
approximately 16 min relative to maximum H3 displacement.
The results described above also indicate that activation do-
mains of HSF play a critical role in recruiting nucleosome
remodeling activities, although the input of Msn2/4 is also
possible since, when both regions in HSF were deleted, the
level of chromatin remodeling at the HSP12 promoter still
remained significant.

To extend this analysis, we examined the kinetics of chro-
matin rearrangements at the HSP82 promoter (Fig. 4), which is
not known to be regulated by activators other than HSF (14).
Although the effects of activation domain deletions were sim-
ilar to that observed for the HSP12 gene, for some HSF dele-
tions the histone displacement was more severely affected. The
displacement profiles for total histone H3 showed that, despite
being physically smaller, the N-terminal deletion in HSF(1-
40�147-833) has a stronger effect on histone H3 displacement
(Fig. 4A). For HSF(1-40�147-583), the histone displacement
was completely abolished. This severe effect at the HSP82
promoter is consistent with the special role this gene plays for
survivability at high temperatures for the yeast strain bearing

FIG. 3. Kinetics of chromatin remodeling at the HSP12 promoter in strains expressing different versions of HSF. Data in panels A, B, and C
are represented in the same format as in Fig. 1. Cartoons on the left represent maps of the HSF constructs expressed in the four different yeast
strains. Note: expression of constructs represents the sole source of HSF.
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the C-terminal activation domain deletion (36). Histone H3
acetylation for the HSP82 promoter was diminished for strains
bearing deletions of individual activation regions and was com-
pletely abolished for HSF(1-40�147-583).

For the SSA4 promoter, which has the smallest degree of
histone displacement relative to HSP12 and HSP82 genes, the
kinetic profiles for total H3 and for its acetylated form parallel
each other for all four strains tested (Fig. 5A and B), indicating
that there is no significant change in the ratio of these forms of
H3 during induction of SSA4. Correspondingly, the level of
relative histone H3 acetylation is very modest, not exceeding
fourfold even in strains expressing the full-size version of HSF.
This low level of histone H3 acetylation is completely lost in
the strain bearing the deletion of both activation regions in
HSF (Fig. 5C).

HSF abundance is different for the various HSP promoters
before heat shock and is increased to different degrees upon
heat shock. Since we showed dependence of chromatin remod-
eling on HSF, we wanted to test if the abundance of HSF at
these promoters is changing during the time course of heat
shock. This is a controversial issue, because in higher eu-
karyotes binding of HSF to its cognate sites is heat inducible,
while in yeast binding of HSF is believed to be constitutive (24,
44). Although recent data indicate that the majority of heat-
inducible gene promoters in yeast are inducibly occupied by
HSF, the occupation level can vary considerably (20). Indeed,
Fig. 6 shows that occupation of the three promoters under
investigation differs. Before heat shock the HSP12 promoter
was not occupied by HSF, while those of HSP82 and SSA4
were (Fig. 6A). Correspondingly, the HSP12 promoter showed

FIG. 4. Kinetics of chromatin remodeling at the HSP82 promoter in strains expressing different versions of HSF. Data in panels A, B, and C
are represented in the same format as in Fig. 1.
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a significant increase in occupation of its promoter by HSF
during the time course of heat shock (Fig. 6B), while occupa-
tion of the HSP82 and SSA4 promoters increased only slightly
(Fig. 6C and D). Comparison of the kinetics of HSF loading
(Fig. 6) for all three promoters with the kinetics of histone
displacement (Fig. 1) indicates that the peak of HSF loading
occurs earlier than the peak of histone displacement. This
suggests that loading of HSF precedes histone displacement.
These data are also consistent with our results of HSF deletion
analysis and further strengthen the conclusion that histone
displacement is HSF dependent. The comparison of the kinet-
ics of HSF loading and the kinetics of histone displacement
also suggests that HSF, although preloaded on the HSP82 and
SSA4 promoters before heat shock, is probably inactive, be-
cause there is no detectable chromatin remodeling at any pro-

moter before heat shock (Fig. 1 to 5) and, as we show below,
Pol II is not recruited to any of the three promoters before
heat shock.

Pol II loading on the HSP promoters coincides with the
beginning of chromatin remodeling. The ultimate effect of
heat shock on HSP genes is the initiation of transcription by
Pol II. To establish if there is any connection between chro-
matin remodeling and change in abundance of Pol II at the
analyzed promoters, we performed ChIPs with an anti-Pol II
antibody that recognizes both phosphorylated and nonphos-
phorylated forms of Pol II. Figure 7A indicates that there is no
Pol II detected at any promoter before heat shock. Absence of
Pol II and presence of HSF (Fig. 6) at HSP82 and SSA4
promoters before heat shock further suggest that the prebound
HSF exists in an inactive form. Upon heat shock all three

FIG. 5. Kinetics of chromatin remodeling at the SSA4 promoter in strains expressing different versions of HSF. Data in panels A, B, and C are
represented in the same format as in Fig. 1.
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promoters showed an increase in Pol II abundance, but with
different kinetic profiles. The change in Pol II abundance at
the HSP12 promoter occurred after the second minute of tem-
perature shift and peaked between 8 and 16 minutes. In con-

FIG. 6. Abundance of HSF is differentially increased at heat shock
gene promoters upon temperature shift. (A) Abundance of HSF be-
fore heat shock at the indicated promoters. Real-time PCR signals for
nonshocked samples were normalized to PHO5 and to input.
(B) Change of HSF abundance at the HSP12 promoter during the time
course of heat shock relative to the non-heat-shock level (0�), which
was arbitrarily set at 1. (C and D) The same experiment as shown in
panel B, except that signals were obtained for the HSP82 and SSA4
promoters, respectively.

FIG. 7. Kinetics of Pol II loading on heat shock gene promoters. Data
in panels A to D are represented in the same format as for Fig. 6, except
that instead of normalizing to the PHO5 promoter normalization was
done to the intergenic region of chromosome V (see Materials and Meth-
ods for primer sequences).
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trast, Pol II appeared at the HSP82 promoter in the first sec-
onds after heat shock and stayed at a high level during the
whole time course, decreasing somewhat after 30 min. For the
SSA4 promoter, Pol II abundance gradually increased, peaking
at 8 minutes after heat shock and decreasing afterwards. For
all three promoters the increased level was approximately
eightfold greater relative to the non-heat-shock level. Impor-
tantly, for all three promoters Pol II loading correlates with the
onset of chromatin remodeling (Fig. 1).

DISCUSSION

In this study we followed various processes taking place at
three heat shock gene promoters during the time course of
heat shock. The major findings were the following. First, com-
paring highly related inducible genes regulated by the same
major heat shock gene activator, HSF, we found that these
genes display different patterns of chromatin remodeling.
While all studied promoters exhibited displacement of his-
tones, the major difference is the degree of H3 acetylation
occurring during the process of histone displacement. This
difference is clearly seen if histone H3 acetylation is compared
between the HSP12 and SSA4 promoters, with the former
showing robust histone H3 specific acetylation and the latter
showing very little effect. Second, the degree of histone H3
acetylation is often correlated with the degree of histone dis-
placement. (i) Histone H3 acetylation increases during the
time course of induction, with increasing displacement of his-
tones for individual genes. (ii) The HSP12 promoter that dis-
plays the highest level of histone displacement also displays the
highest level of histone H3 acetylation. (iii) Deletions of the
activation domains in HSF decrease histone displacement and
proportionally decrease histone H3 acetylation at individual
promoters. Third, while significantly differing in amino acid
sequences and functionalities, the two activation domains of
HSF display an almost identical potential to mediate histone
displacement and histone H3 acetylation at least at the HSP12
promoter. Fourth, HSF that mediates chromatin remodeling at
analyzed promoters is activated via two distinct pathways, ei-
ther by triggering activity of HSF already preloaded onto the
promoter (HSP82 and SSA4) or by inducing HSF binding to
the promoter (HSP12). These and other observations are dis-
cussed below.

Differential regulation of chromatin remodeling of heat
shock gene promoters. Upon heat induction, promoters of heat
shock genes undergo drastic and very fast changes associated
with the efficient eviction of nucleosomes (52). This chromatin
remodeling surpasses in its speed and efficiency the well-char-
acterized nucleosome displacement at the promoters of PHO5
(5, 28) and Gal10 (30) genes. Previous work on HSP82 (52)
and PHO5 (41) showed that there is a mild transient histone
acetylation prior to the major nucleosome displacement. At
the HSP82 promoter, this acetylation has been shown as an
approximately 1.5-fold increase in the abundance of acetylated
forms of histones preceding major nucleosome displacement.
Our results for the HSP82 promoter do not confirm such a
transient and mild change of histone acetylation for the indi-
cated promoter, probably because of a slight difference in the
experimental approach. We used real-time PCR, while Zhao
and coauthors (52) used conventional PCR. Although we used

a very rigorous approach for selection of primers and control
of optimal conditions for PCR (see Materials and Methods),
we found that a change of 1.5-fold was often within the statis-
tical error between repeated experiments. Although we cannot
with absolute certainty detect any transient histone acetylation
at the HSP82 promoter prior to histone displacement, we show
that the histone H3-specific acetylation occurs during displace-
ment. For the HSP82 promoter, this H3-specific acetylation
peaks at a fivefold level of enrichment relative to the non-heat-
shock level (Fig. 1). When we compare the H3 acetylation level
for other promoters, it appears that it varies drastically, reach-
ing a 20-fold increase of acetylated H3 fraction at the HSP12
promoter and only 3-fold for SSA4 (Fig. 1C). The dynamic
character of H3 acetylation and the masking of this process by
nucleosome loss could be the reason why histone acetylation
during nucleosome displacement has not been previously re-
ported for heat shock genes. Although we report an increase in
acetylation of histone H3 during histone displacement, this
increase in H3 acetylation is in reference to the fraction of
histone H3 remaining at the promoter or in its vicinity during
increasing histone displacement. The enrichment of the acety-
lated form of H3 could be a result of preferential displacement
of the unacetylated form of H3, which would contradict the
existing concept of gene activation, or a result of increased
histone acetylation activity associated with nucleosome dis-
placement as it was suggested previously (41, 52). Based on our
experimental results we cannot determine if histone H3 acet-
ylation is a by-product of chromatin remodeling or a required
step as it was suggested previously. Yet, we see a significant
difference in the level of H3 acetylation, especially if the ana-
lyzed promoters are compared to each other (Fig. 1). What
could be behind such diverse variations in histone H3 acetyla-
tion and the extent of chromatin remodeling between heat
shock gene promoters?

Since all three promoters are regulated primarily by HSF, it
is necessary to consider the HSE architecture in these promot-
ers. A typical HSE contains three or more sequential inverted
repeats of the sequence nGAAn. In natural promoters, this
consensus sequence is rarely preserved. Currently, HSEs are
separated into three groups: perfect, gapped, and stepped. A
perfect HSE has all three inverted repeats in a contiguous
array (nTTCnnGAAnnTTC) (2, 39, 48, 49). Gapped HSEs
have two consecutive inverted sequences, with the third se-
quence separated by 5 bp (42). Stepped HSEs have 5-bp gaps
separating all three modules (50). While the HSP82 and SSA4
promoters have a perfect match to the gapped HSE consensus,
the HSP12 promoter has a stepped HSE with several mis-
matched nucleotides. Stepped HSEs, especially with deviation
from consensus, are known to be bound by HSF in an inducible
manner (14, 20), while perfect and stepped HSEs without
mismatch are usually constitutively occupied by HSF in yeast
(19, 24, 44). These notions are consistent with our results of
HSF occupancy (Fig. 6), showing constitutive occupation for
the SSA4 and HSP82 promoters and inducible occupation of
the HSP12 promoter. The HSP82 and SSA4 promoters, al-
though possessing similar types of HSEs, nevertheless have
different types of regulation. While the HSP82 gene is known
to change the expression level 20- to 40-fold upon heat shock
(13, 14), the SSA4 gene is much more inducible, changing its
expression 3,000-fold (reference 51 and our unpublished data
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from the same experiments reported in reference 13). The
lower inducibility range of the HSP82 gene probably stems
from the fact that this gene has a certain level of transcription
before heat shock, which can be reduced 50-fold by deletion of
its major HSE (14, 18). The SSA4 gene, in contrast, has no
detectable level of basal transcription (51), which suggests that
it is possibly repressed before the induction stimulus. This
repression prior to heat shock has been shown for the similar
highly inducible and related SSA3 gene, where it is likely de-
termined by Spt2 (4). Another possibility for SSA4 repression
could be the function of the URS1 sequence in the SSA4
promoter. Under non-heat-shock conditions, URS1 is usually
bound by the Ume6-Sin3-Rpd3 repressor complex containing
RPD3 histone deacetylase (26).

In light of the previously published experimental data de-
scribed above, some aspects of differential chromatin remod-
eling at the three promoters we analyzed have now become
clearer. Since the HSP82 promoter is probably poised for in-
duction (HSF is preloaded and the promoter is not repressed,
as probably is the case of SSA4), it shows the immediate be-
ginning of chromatin remodeling, the onset of which coincides
with the fast loading of Pol II. In contrast, the SSA4 promoter
is possibly repressed by a factor causing a low level of histone
H3 acetylation (Fig. 1 and 5) and delays recruitment of Pol II
(Fig. 7D), even though HSF is preloaded. With the HSP12
promoter, the situation is different and is determined by the

gradual loading of HSF, absent on this promoter before heat
shock (Fig. 6A and B). To summarize (Fig. 8), our experiments
as well as previously published data suggest that each gene is
regulated in its unique way, which reflects the extent and ki-
netic profiles of chromatin remodeling taking place at each
promoter. However, all three promoters display extensive his-
tone displacement by a mechanism which is not yet determined
and requires further analysis.

Correlation between histone H3 acetylation and histone dis-
placement at heat shock gene promoters. By analyzing differ-
ences in chromatin remodeling at three promoters, we ob-
served that the level of histone H3 acetylation often correlated
with the extent of histone displacement. First, this correlation
is observed if we compare different time points of the kinetic
experiments for the same promoter. The degree of histone
displacement gradually increases over time for all three pro-
moters tested. In each case, and especially obvious for the
HSP12 and HSP82 promoters, the acetylation level of H3 also
increases (Fig. 1C). Second, the three promoters analyzed in
this study exhibited different extents of histone displacement.
In this comparison we saw again that the HSP12 promoter with
the highest level of histone displacement had the highest level
of histone H3 acetylation, while the HSP82 and SSA4 promot-
ers with lower levels of histone displacement displayed lower
degrees of H3 acetylation. The correlations between histone
displacement and histone H3 acetylation for the HSP82 and

FIG. 8. Dramatic histone displacement during activation of heat shock genes is not uniformly associated with robust histone H3 acetylation.
The molecular model schematically represents differential processes at the three studied heat shock gene promoters during induction of
transcription. Acetylated H3-enriched nucleosomes in the intermediate state at the HSP12 and HSP82 promoters are represented in purple.
Nucleosomes with unacetylated H3 are shown in brown. Inactive HSF in the uninduced state is represented in blue, and activated HSF is shown
in red. Intermediate levels of HSF and Pol II loading are represented by scaled-down cartoons for the corresponding proteins. Histone
displacement is represented by a diminishing amount of nucleosomes in the intermediate state. Intermediate-state cartoons roughly represent the
situation at promoters after 2 minutes of heat shock.
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SSA4 promoters are not so clearly observed, because the rel-
ative level of histone H3 acetylation is relatively low and indi-
vidual regulation of promoters by various factors (see above) is
involved.

Correlation between the extent of chromatin remodeling
and the acetylation of histone H3 is also noticeable when we
compare events at an individual promoter in strains bearing
differentially affected versions of HSF. It is most apparent for
the HSP12 promoter, where the level of histone H3 acetylation
is the highest (Fig. 3). Here, a deletion of either one of two
HSF activation domains has a similar diminishing effect on
histone displacement and histone H3 acetylation. Deletion of
both activation regions in HSF also has strong effects on both
histone H3 acetylation and displacement. For HSP82 and SSA4
promoters, similar trends are not so obvious, probably because
the acetylation level of histone H3 is relatively low, even in the
wild-type strain.

The H3-specific posttranslational modifications were shown
to be important for subsequent changes in chromatin during
transcriptional activation. In fact, similar H3-specific acetyla-
tion has been demonstrated for the Gal10 promoter (30). In
this case a two- to threefold loss of histone H3 was paralleled
by a mild increase in histone H3 acetylation. Mild histone
acetylation preceding nucleosome loss at HSP82 and PHO5
promoters is considered to be an important step required for
chromatin remodeling (40, 52). In our study we have demon-
strated that histone H3 acetylation continues after histone
displacement has been initiated and reaches a 20-fold increase
at the HSP12 promoter. It is tempting to speculate that this
robust histone H3-specific acetylation is an important step in
chromatin remodeling at least for the HSP12 promoter. As
suggested by the histone code hypothesis, increasing histone
acetylation may additionally attract bromodomain-containing
chromatin-remodeling complexes (22), promoting robust his-
tone displacement at the HSP12 promoter. Another way to
interpret the increase of the fraction of acetylated H3 associ-
ated with histone displacement is to assume that the ratio of
HAT to its substrate is increasing during histone loss, thus
increasing acetylation of the remaining histones. We do not
favor this interpretation, because it suggests that histone acety-
lation plays a passive role in chromatin remodeling. Also, for
the HSP12 and SSA4 promoters we see that histone H3 acety-
lation increases after histones start to return during attenua-
tion. This is manifested as a shift in the maximum relative
histone acetylation in comparison to the maximum histone H3
displacement, which is observed at the HSP12 promoter for all
four strains expressing different variants of HSF (Fig. 3). For
the SSA4 promoter, a similar effect is observed only for the
wild-type strain, where histone H3 acetylation is still detectable
(Fig. 5). This observation suggests that the balance between
histone acetylation and deacetylation remains shifted toward
the former, even during return of nucleosomes. This in turn
may indicate that recruitment of HATs and recruitment of
activities leading to the nucleosome displacement are sepa-
rately regulated.

Although HSF plays the major role in histone displacement
and transient histone H3 acetylation, other stress-related tran-
scription activators, such as Msn2 and Msn4 in the case of the
HSP12 promoter, could be involved. In fact, while the deletion
of both HSF activation regions practically eliminates H3 dis-

placement at the HSP82 promoter, the H3 displacement level
at the HSP12 promoter remains substantial. This may be at-
tributable to the function of Msn2/4. The acetylation of histone
H3 prior to the beginning of histone displacement observed
only at the HSP12 promoter and at similar level for all four
strains expressing variants of HSF (Fig. 3) might also be the
function of Msn2/4. For the HSP82 promoter, where HSF is
the major, if not the only, activator, double deletion of HSF
activation regions virtually eliminates H3 displacement. This
observation is also consistent with the previous report that it is
the HSP82 gene that is critical for yeast survivability at elevated
temperatures in the strain expressing C-terminally truncated
HSF (36).

Alternative pathways of histone displacement. An important
point emerging from our data is that although the three co-
regulated genes we studied display robust histone displace-
ment during induction, they reach their maximally histone-
stripped state via two distinct chromatin-remodeling pathways.
For the HSP12 and HSP82 promoters (especially for the
former), chromatin changes are associated, and often corre-
lated, with dramatic enrichment of promoter chromatin with
acetylated histone H3, while for the SSA4 promoter they are
not. Yet, all three promoters show dramatic depletion of his-
tones. The possibility of distinct mechanisms differentially as-
sociated with histone H3 acetylation was demonstrated re-
cently for the GAL10, BAT1, GDH1, and TGP1 genes (30).
These genes are regulated by different activators and, for the
last three genes, histone acetylation is observed without his-
tone displacement. We show here different pathways of chro-
matin remodeling for very closely related and coregulated
genes. Our data argue that the robust histone displacement
from promoters is not necessarily associated with equally ro-
bust histone acetylation. The extremely high histone H3 acet-
ylation in the case of the HSP12 promoter might be caused by
cooperative action of HSF and Msn2/4 activators. The absence
of significant histone H3 acetylation at the SSA4 promoter
might be the action of a specific histone deacetylase. The
intermediate behavior of the HSP82 promoter could be due to
the absence of any other regulating factors except HSF. What-
ever the cause of such differential behavior, we have demon-
strated the existence of two distinct chromatin-remodeling
pathways: one associated (for the HSP12 and HSP82 promot-
ers) and the other one not associated with robust histone H3
acetylation (for the SSA4 promoter) during histone displace-
ment (Fig. 8). This is an interesting observation, because it
implies that a histone-acetylated platform recognized by bro-
modomain-containing chromatin-remodeling complexes is not
uniformly required for the robust histone displacement at gene
promoters during induction of transcription.

HSF activity is regulated via two distinct pathways. Our
data indicate that an important factor determining the differ-
ences in kinetic profiles of histone H3 displacement at the
three promoters is the difference in abundance of HSF prior to
heat shock. HSF is at low abundance at the HSP12 promoter
before heat shock. That explains a delay in the beginning of
chromatin remodeling for this gene. In contrast, HSF loading
at the HSP82 and SSA4 promoters is already high before heat
shock. Consistent with this is faster initiation of histone dis-
placement at both promoters that is somewhat delayed at the
SSA4 promoter, probably in connection with lower H3 acety-
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lation. For the HSP12 promoter, where the kinetics of HSF
loading is clearly defined, the peak of HSF loading precedes
the peak of H3 displacement, suggesting that HSF is mediating
this chromatin remodeling.

Differential loading of HSF raises an interesting issue of
regulation of HSF activity. This activator is regulated at mul-
tiple levels: monomer-trimer transition with only the trimer
being able to interact with the heat shock element sequence of
promoter DNA (37); phosphorylation of HSF at multiple sites,
some of which are activating and some repressing (21, 23, 45);
and repressing interactions with molecular chaperones, many
of which are products of heat shock genes, thus forming a
feedback loop regulation (37, 47). One possibility for why HSF
does not interact efficiently with the HSP12 promoter before
heat shock is that this promoter contains a very degenerate
HSE. The inducible binding of yeast HSF to such degenerate
HSEs in a number of yeast promoters was demonstrated pre-
viously (14, 20). Of the several ways of regulating HSF activity
mentioned above, monomer-trimer transition appears to be
likely involved in DNA binding ability. This pathway of HSF
regulation was demonstrated for higher eukaryotes but not for
yeast. Our results showing heat-inducible binding of HSF to
the HSP12 promoter and results from other groups (14, 17, 20)
suggest that perhaps some form of regulated monomer-trimer
transition functions in yeast as well as in higher eukaryotes.
The activation of prebound HSF at the HSP82 and SSA4 pro-
moters is likely explained by feedback loop regulation, as sug-
gested previously (37, 47).

Another interesting aspect regarding the function of HSF is
that for the HSP12 and SSA4 promoters the individual input of
each of the two HSF activation domains in histone displace-
ment seems to be almost equal (Fig. 3 and 5). This is even
more surprising considering that these two domains do not
have homology. It remains to be determined how these two
different domains similarly organize specific recruitment of
protein machineries leading to similar results in terms of chro-
matin remodeling.

Pol II loading on heat shock gene promoters precedes major
chromatin remodeling. Although HSF is sufficiently abundant
at HSP82 and SSA4 promoters before heat shock, it appears to
be inactive. This was apparent because chromatin remodeling
was not initiated and none of the three promoters showed any
presence of Pol II before a temperature shift. However, upon
heat shock all three promoters showed an increase in Pol II
loading. A striking example of this is observed at the HSP82
promoter. This promoter shows a sudden increase in Pol II
abundance during the first 30 seconds of heat shock. More-
over, the level of Pol II at 30 seconds is not significantly dif-
ferent from the maximum at 1 min (Fig. 7C). At this time point
chromatin remodeling is just in the beginning of its develop-
ment (Fig. 4). A similar tendency is seen for the HSP12 and
SSA4 genes. After 4 minutes the abundance of Pol II at the
HSP12 promoter is close to maximum, while the displacement
of H3 at this time point is very minor. The SSA4 promoter has
a similar trend, although Pol II loading at this promoter is
substantially delayed despite HSF being preloaded similarly to
the HSP82 promoter. This delay could be connected to the
anomalously low level of histone H3 acetylation at this pro-
moter and/or this promoter being repressed before heat shock
(see above). To summarize, it appears that Pol II loading on all

three promoters coincides with or even slightly precedes the
onset of chromatin remodeling. That could suggest that re-
cruitment of a Pol II-containing protein complex (including the
Mediator complex) brings major chromatin-remodeling activ-
ity to the promoters. This is supported by the fact that Pol II
precedes major chromatin remodeling (compare Fig. 1A and
7B to D). To further define steps and the mechanism of chro-
matin remodeling at promoters of heat shock genes, it seems
crucial to identify the enzymatic activities involved.
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