addled his

parts.

And flipping

hurt by the

people even

got wind

through

as always

a loophole.

was do-

ing over

that these

would do

some-

words and

blends of

words.

encephalitis

is

that

one will

and

discovered

a

J. A. LINDON

Addlestone, Weybridge, Surrey, England

(EDITOR’S NOTE: The historical beginnings of the subject treated by Mr. Lindon in this essay may be of interest to readers. Several years ago, Ben Rogers noticed that the word LOGOLOGY possessed a certain simple property of alphabetical balance (see section twenty-nine of Dimitri Borgmann’s Beyond Language, published by Charles Scribner’s Sons), and communicated this to Dimitri Borgmann who subsequently found many more such words. Mr. Borgmann mentioned the matter to Mr. Lindon in a letter, but was vague on the subject, and Mr. Lindon, whose fertile mind was thus primed with only the shadowy notion that some words have some kind of “balance,” conceived and worked out a much more complex idea—that of centrally balanced beam-words.)

The alphabet position numbers (A=1, B=2, C=3, etc.) are considered as weights, the letters are taken to be equally spaced along the word, and we have to find words that balance at their centers (Centrally B-balanced B-eam ‘Words).

NOTATION: Words with an even number of letters we term for brevity ENL words, those with an odd number of letters ONL words.

The MOMENT or turning effect of a letter is found by multiplying its alphabet position number by its distance (in some convenient system of units) from the central pivot.

LEMMA 1: In ENL words, the pivot comes exactly between the two middle letters, and every letter contributes toward the balance or unbalance. In ONL words, the pivot comes directly under the middle letter, which is consequently “free,” i.e., it does not contribute toward the moment on either side and can, in fact, be anything.

LEMMA 2: Measuring outward from the pivot on either side, we use the following series of numbers to represent distances:

ENL words: 1, 3, 5, 7
ONL words: 1, 2, 3, 4

A couple of examples will make these points clear. Here is an ENL word, ALPHA-
BET, with pivotal distances above the letters and weights below:

7 5 3 1 1 3 5 7
A L P H A B E T
1 12 16 8 1 2 5 20

THE JOURNAL OF RECREATIONAL LINGUISTICS
Moment of left side, going counterclockwise:
\[1 \cdot x + 8 \cdot x16 + 5 \cdot x12 + 7 \cdot x1 = 123 \]
Moment of right side, going clockwise:
\[1 \cdot x + 8 \cdot x2 + 5 \cdot x5 + 7 \cdot x20 = 172 \]
Therefore, ALPHABET is not a CBB word.

As our second example, let us take the ONL word SPONSOR:

\[
\begin{array}{ccccccc}
3 & 2 & 1 & 0 & 1 & 2 & 3 \\
S & P & O & N & S & O & R \\
19 & 16 & 15 & 14 & 19 & 15 & 18 \\
\end{array}
\]

pivot

Moment of left side, going counterclockwise:
\[1 \cdot x15 + 2 \cdot x16 + 3 \cdot x19 = 104 \]
Moment of right side, going clockwise:
\[1 \cdot x19 + 2 \cdot x15 + 3 \cdot x18 = 103 \]
Therefore, SPONSOR is not a CBB word, either— it fails by a margin of only one unit.

THEOREM: For words of fewer than four letters, the only CBB examples are palindromes. All palindromes are automatically CBB words, but not vice versa.

To save space we shall, in what follows, usually ignore palindromes and concentrate solely on asymmetrical CBB words.

Examples of CBB words: AXLE, BOGIE, CHIMED, DOTWISE, ECSTATIC.

THEOREM: Every ENL word, if it is to be a CBB word, must have an even number of even-numbered letters.

This theorem, which furnishes what we may term the ENENL test, is very important. Suppose, for example, that we are trying to find CBB words of 6 letters from a word list, testing perhaps the P's. Then, of the following consecutive nine words:

\[
\begin{array}{ccc}
PINEAL & PINGLE & PINITE \\
PINERY & PINING & PINPED \\
PINGED & PINION & PINRED \\
\end{array}
\]

only the last one need be considered, since our ENENL condition enables us to reject at sight the first eight. Even the last word can be rejected at sight, for a different reason. It is the letters furthest from the pivot that have the greatest turning effect, and we see at once that the PI- at one end cannot possibly balance the -ED at the other. So PINRED fails to satisfy what we may call the OB condition, that of Optical Balance.

PROOF OF THE ENENL THEOREM: In any ENL word, the moment of any letter will be odd or even according as the weight of that letter is odd or even. Hence, if the moment of either side is even, it must have an even number of odd-numbered letters, and if it is odd, it must have an odd number of odd-numbered letters. But
in a CBB word the two sides balance, so that in either case the whole word must have an even number of odd-numbered letters. But the word has an even number of letters altogether; so it must also contain an even number of even-numbered letters.

There is no such useful general theorem for ONL words, though we may note the following:

THEOREM: In every CBB word of 5 letters, the pair of letters flanking the pivot must be either both odd or both even.

(E.g., in BOGIE the O and the I are both odd.)

Although the two halves of a CBB word balance, we must note that:

(1) The weights of the two halves will not in general be the same; and

(2) These weights will not in general act at the midpoints of their respective halves, nor indeed at equal distances from the pivot on either side.

This means that, although reversing a CBB word completely will, of course, not alter the balance, e.g.,

DOLE balances, therefore so also will ELOD, yet we cannot reverse each half separately, i.e., turn the word inside out, so to speak, and necessarily retain balance. The following will, therefore, not necessarily balance:

ODEL and LEDO.

Nor will balance necessarily be retained if the two halves are slid along equal distances away from the pivot on either side. Thus, the following formations will not necessarily balance:

DO...LE DO...LE etc.

NOTE: It is possible to find an infinity of positions of balance for any two sets of combinations of letters; but these will, in general, lie so far from the pivot as to be quite useless for word-finding purposes. Thus, the next time that DO and LE balance will be at:

DO....LE

the potential word having 23 letters.

THEOREM: Balance (or degree of unbalance) will not be affected if we add or subtract equal weights at corresponding positions on either side of the pivot. Thus, subtracting 1 from each of the two terminal letters of DOLE, we reduce the D to C and the E to D, so obtaining COLD, which also balances. This leads to a new

THEOREM: If one of a pair of shift-words is CBB, then, provided no alphabet termini are overrun during the shift, so also will be the other. Example:

COLD, shifted three spaces, becomes FROG without any overrunning of alphabet termini. COLD is a CBB word, consequently so also is FROG.

THE "EW" PROPERTY. We come now to a new and important higher order of CBB words, those possessing the EW property, i.e., having E-qual W-ights on either side of the central pivot.

THEOREM: All palindromes (i.e., symmetrical CBB words) automatically possess the EW property.

THEOREM: Asymmetrical EW/CBB words must have at least 6 letters. (This is very easily proved by simple algebra.)

THEOREM: The two halves of any EW/CBB word may be reversed (the word turned inside out) without loss of either balance or of the EW property.
THEOREM: The two halves of any EW/CBB word may be slid along equal distances away from the pivot on either side, and both balance and the EW property for the formation will be retained.

These theorems are sometimes useful in forming new and longer CBB words from known shorter ones.

EXAMPLES OF EW/CBB WORDS:

ANA, DEED, MINIM, REDDER, DEIFIED;
SEYTON (character in Macbeth), SCORNER, HELL-LIKE.

Taking SEYTON to illustrate our above theorems, we see that all such letter formations as the following ones will be EW/CBB:

SEYTON, SEY TON, SEY TON, SEY TON, etc.
NOT YES, NOT YES, NOT YES, YES, etc.
TONEY, TON SEY, TON SEY, TON SEY, etc.
YES NOT, YES NOT, YES NOT, YES NOT, etc.

TESTING 6- AND 7-LETTER CBB WORDS FOR THE EW PROPERTY.

6-and 7-letter CBB words each have 3 letters on either side of the pivot. If the difference between the innermost and outermost letters on one side is mirrored by that on the other, then the word is also EW.

SEYTON: Y-S = T-N, i.e., 25-19 = 20-14 = 6, EW.

SCORNER: S-O = R-N, i.e., 19-15 = 18-14 = 4, EW.

GENERAL RULE: Cut out the two or three middle letters of your CBB word, telescope down (but leave a central letter-space) and test the resulting formation for the CBB property. If it balances, the original word was EW. E.g.,

SE(YT)ON = SE.ON and SC(ORN)ER = SC.ER

Since both SE ON and SC ER balance, SEYTON and SCORNER were both EW/CBB.

Reversing this, we have a rule for constructing EW/CBB words.

RULE: Take any 5-letter CBB formation and drop the central letter. Slide the terminal pairs apart, so as to leave 2 or 3 central spaces. Fill these in so as to form a word that balances. This word will then be EW/CBB.

EXAMPLE: The word TAPER is CBB. We therefore try to complete TA...ER and/or TA...ER, each of which will be found to have an unbalanced clockwise moment equal to 2 units. Aligning TR on two ordinary alphabet strips (to correct this), we find the serviceable letter-pair NL, and so obtain (after inserting the free central letter, here G) the word TANGLER, which will be EW as well as CBB.

EXTENSION OF RULE: We do not have to use a CBB word as starting point. Take any 2-letter beginning or ending that seems promising, e.g., -ST. Then the formation TS.ST will, of course, be CBB. Use appropriate strips (ordinary alphabet upward on left, alternate-letter alphabet downward on right) to find alternative pairs for the unlikely left-hand pair TS. We find (among others) SU and VO. Choosing the former, we have as our CBB starting point the formation SU.ST, which we expand into the formations SU.ST and SU...ST, which, as
we have seen, will no longer balance. The rule is that the degree of unbalance equals the difference in weights between the outermost letters, but in the reverse direction, i.e., the lighter such letter tends to go down. Hence, each of the two incomplete formations above has a counterclockwise moment of 1 unit (the difference in weights between S and T). Using two ordinary alphabet strips, we align ST to correct this unbalance, and find the serviceable inner pair NO or N.O, which allows formation of the reasonable coined word SUN-HOST ("a host as radiant as the sun"), which will be both CBB and EW.

REPEATERS, RHYMERS, AND NUMIDS: These are words with identical, or almost identical, halves. (Numids, of course, are also the alien inhabitants of the planet NUMIDO, who wear clothing everywhere except around their middles, fashion experts please note!)

(a) REPEATERS: Words with exactly repeating halves (TOM-TOM, DIK-DIK, BERIBERI, etc.). Such words can be CBB only if each half is also a CBB formation. This means that, up to and including 6 letters, each half must be a palindrome, the entire word being a double palindrome. Therefore, 6-letter repeaters such as TOM-TOM cannot be CBB words, while 6 letter repeaters such as TUT-TUT are automatically CBB words. Above 6 letters, we may have asymmetrical formations that are CBB repeaters, e.g. BORABORA, DIRADIRA, LIRILIRI, BILABILA, PILOPILO, TURUTURU, etc. Whether actual words exist, satisfying our conditions, is another matter.

(b) RHYMERS: Words like NITWIT, HUBBUB, PEG LEG, HONG KONG, etc. Suitable formations (and, indeed, words) can be found having as few as 4 letters, e.g., HI-FI LONDON and the synthetic TENT-BENT.

(c) NUMIDS: Words in which the right-hand side repeats the left-hand side, but with a new inner letter, usually a vowel (ZIGZAG, SINGSONG, etc.). Such formations can be CBB. Synthetic examples include MID-MUD, CUR-CAR, DIRE-DARE, and PILL-POLL.

CBB DOUBLETS: CBB words in which each half is also a CBB formation. This means that the whole word will be EW/CBB and also that the weight of each half acts at the midpoint of that half. Contrived examples include MILL-FROG, JAPE-FILE, and LOIN-TAMP. The last of these, a reasonable (?) medical term, has each half weighing 50 units and possessing a turning effect of 200 units. Furthermore, it has no repeated letter.

SEARCHING FOR CBB WORDS

There appear to be two general methods. One may either (a) test actual words for the CBB property, or (b) construct CBB formations that may turn out to be words. Different searchers may prefer different methods and different shortcuts to assist them on their way. Here I can give only a few hints.

(a) Testing Actual Words for the CBB Property

Wherever possible, avoid multiplication, which is both time-wasting and tiring. It will be found convenient to have at hand cards (one for ENL words, one for

THE JOURNAL OF RECREATIONAL LINGUISTICS
CBB WORDS

ONL words) on which the alphabet position numbers and their most commonly required multiples are shown in columns, thus:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11</td>
<td>15</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>

Another and more extensive type of table which will be found useful if we take the trouble to prepare it gives directly the turning effect of letter-pairs in certain positions. Thus, when testing 6-letter words, I prepared such a table for the terminal letter-pairs. A table of this sort has to be 26 x 26 in size, with a complete alphabet horizontally along the top and another vertically down along the left-hand side. Horizontally, the alphabet position numbers are multiplied by 5, vertically by 3, and the “cells” at the points of intersection give the sum of these. Accordingly, if I wish to test the word PRINTS, I can look up directly the turning effect of the initial PR- and of the final TS, finding 134 and 155 at once.

A compact but extremely useful form of table is one giving the TERMINAL DIGITS of the moments, all measured in the same sense, anticlockwise. The upper part of such a table for ENL words is shown at the right, the four columns of figures being the ones corresponding to the four central letters of the word.

The method of use is as follows: For a 4-letter word, simply add the appropriate four digits, neglecting any carried tens, and if the final result is not zero, the word is not worth testing further. If it is zero, the word should be tested by actual multiplication.

For instance, suppose that our word is JADE. We simply add mentally the four digits in our table that correspond to J, A, D, and E, saying to ourselves:

0 + 1 = 1, + 6 = 7, + 5 = 2, no good.
FADE, on the other hand, would have given us:
8 + 1 = 9, + 6 = 5, + 5 = 0, test further.

And, in fact, FADE is a CBB word.

WORD WAYS
Such a table is hardly worth using for 4-letter words. It is, however, very useful for 6-letter words. We apply it in exactly the same manner to the four central letters, adding 5 if the two outermost letters (the first and sixth) are one odd, one even. Thus, if our word is DECADE, we do have to add 5. Testing the 4-letter middle, we have:

\[5 + 3 = 8, \quad 8 + 9 = 7, \quad 7 + 8 = 5, \quad \text{add } 5 = 0, \quad \text{test further.}\]

For an 8-letter word we use the two outer columns in reverse for the two terminal letters, proceeding otherwise as for 6-letter words. Testing FACE-ACHE, which satisfies both the OB and the ENENL tests, we have: for the F—E, \(2 + 5 = 7\), add 5 (because A and H are one even, one odd), getting 2, ignore the two C’s (which balance), add 5, \(= 7\), add 9, \(= 6\). (for the two middle letters), no good.

One last point. It is often convenient, especially when tables are not available, to compute the moments, not of single letters but of the letters taken in pairs, one on each side of the pivot. Thus, testing the word MOTION, we could say:

\[5 \times 13 = 65; \quad 3 \times 15 = 45; \quad \text{add, we get } 110; \quad \text{plus } 20 = 130.\]
\[9; \quad 3 \times 15 = 45; \quad \text{add, we get } 54; \quad 5 \times 14 = 70; \quad \text{add, we get } 124.\]

No good.

It is, however, far easier to consider the letters in opposite pairs, MN, O0, T1, and (taking clockwise as positive) say:

5, plus nothing, minus 11, no good.

(b) Constructing CBB Formations in the Hope of Finding Words

Many different methods may be used, and there is scope here for considerable ingenuity in using alphabet strips. We may, when studying 6- or 7-letter formations, as an example, choose likely left-hand or right-hand sides (e.g., CON-, DIS-, PRO-; -ING, -ISH, -FUL) and then form opposing halves that balance. Or, we may prefer to choose an outer pair of letters (e.g., \(P--G\)) and then try to insert suitable middles that make the whole formation balance. Another idea is to start with some word, CBB or otherwise, and modify it, changing this or that letter, expanding it and filling in the central space(s), and so on, noting always the degree of balance or unbalance. This idea was exemplified in Part 1 of our essay.

NOTE ON USING THE STRIPS: Let U7, D4 refer to strips on which the sequence of letters is, respectively, “every 7th, written up” and “every 4th, written down.” (The latter, like all even numbered strips, separates into two halves.) And similarly for other strips. We shall then find the following rules useful:

1. To find a pair of letters suitable for any two letter-positions in a word, choose strips having the same numbers as the distance-multipliers of those letter-positions; but use them the other way around.

2. For letter-positions one on each side of the pivot, use strips which are either both U or both D; for two letter-positions on the same side of the pivot, use one U, one D.

An example will make these rules clear. Suppose we have chosen the right-hand side -TION for an intended 8-letter word, and have already tried suitable initial pairs up to KA, KE, etc. Our strips are being used to fill in the 3rd...
and 4th letter-spaces, whose multipliers are 3 and 1 respectively, so we are using strips U1 and D3, in that order. The strip has a moment of 220 units in a clockwise direction, so the left-hand set of letters must have a moment of 220 units in a counterclockwise direction. Initial J, when we come to it, has a moment of 70, and we successively try the various vowels after it, multiplying each by 5 for its moment. Thus, JU- has total moment 175, leaving 45 for the two unknown strip-letters. Aligning any 45 pair, such as GX, we look to see if any equivalent pairs occur that make a word. JULITION looks promising, but is not confirmed by any dictionary. JUNGATION, on the other hand, makes the grade.

FRAME AND SLIDER. This device, which may be adapted to many purposes, in effect enables us to work with four strips simultaneously. Here we illustrate its use by finding the 4-letter middle of a 6-letter CBB word whose terminal letters have been chosen or given. The frames, which can conveniently be laid down in a child’s squared arithmetic book, consist merely of a central channel flanked by a pair of D1 Alphabets, which differ in overlap. (The one illustrated has a clockwise overlap of 7 letters.) The sliders (only three are required) have 18 lettering on both edges, with a choice of zero, plus-one, or minus-one overlap. (Illustrated is a minus-one overlap.)

Suppose now that we have to fill in the 4-letter middle of a 6-letter formation whose terminal letters are V—R. These two letters give to the foundation an anticlockwise moment of 20 units. The pair of letters next inside them and one on each side of the pivot (those on the frame) will each have to be multiplied by 3, so we select a frame having such an overlap that this, when multiplied by 3, as nearly as possible cancels out the above 20. In this case, we choose a clockwise overlap of 7. But
3×7 is 21, which is one unit too many, so we choose a slider having a single-unit overlap to put this right (see illustration above). Then, provided we take care not to overrun alphabet termini, we can say that our 4-letter middle will be correctly filled in with any two aligned pairs, frame-slider, slider-frame (not both necessarily in the same line). Thus, with the slider in the position shown, we have such balancing formations as VHSIR, VHEDOR, and VAYJHR, and if we move the slider into other positions, others such as VACWAR, VADLER, VIRTOR, and VISCUR. One genuine word is shown with the slider in the illustrated position: VENDOR.

We have now reached the end of our journey. Our map is very incomplete, but enough representative ground has been covered to make it clear to the traveler what sort of country he is in. Should he wish to explore further, no passport is required. All that remains for us is to produce our results, or at least a reasonable selection, the chief omissions being synthetic, hyphenated words not in any dictionary, though some of these will be included, to give our lists that certain, special flavor so noticeably lacking in dictionary words. To and including 6-letter words, the lists are fairly full; beyond that, fragmentary. I have made no attempt to seek out long examples.

4-LETTER WORDS

<table>
<thead>
<tr>
<th>ARID</th>
<th>AULD</th>
<th>AXLE</th>
<th>COLD</th>
<th>CURD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE</td>
<td>GAGE</td>
<td>LOVE</td>
<td>PION</td>
<td>TADS</td>
</tr>
<tr>
<td>FADE</td>
<td>GIRD</td>
<td>LOIN</td>
<td>PLUM</td>
<td>TAMP</td>
</tr>
<tr>
<td>FILE</td>
<td>HI-FI</td>
<td>MILL</td>
<td>QUOS</td>
<td>TORS</td>
</tr>
<tr>
<td>FLOE</td>
<td>HIRE</td>
<td>NASH</td>
<td>RENO</td>
<td>TOUR</td>
</tr>
<tr>
<td>FORE</td>
<td>HULK</td>
<td>NORM</td>
<td>SCUM</td>
<td>WENT</td>
</tr>
<tr>
<td>FROG</td>
<td>IMAM</td>
<td>ONER</td>
<td>SIFT</td>
<td>YEAH</td>
</tr>
<tr>
<td>JAPE</td>
<td></td>
<td></td>
<td>SLIT</td>
<td></td>
</tr>
</tbody>
</table>

5-LETTER WORDS

<table>
<thead>
<tr>
<th>AZURE</th>
<th>DRAPE</th>
<th>IMBUE</th>
<th>PIKE</th>
<th>TAMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACCA</td>
<td>DRUPE</td>
<td>JURAT</td>
<td>PILER</td>
<td>TAPER</td>
</tr>
<tr>
<td>BEDAD</td>
<td>ELAND</td>
<td>KNEIL</td>
<td>PINER</td>
<td>TATER</td>
</tr>
<tr>
<td>BEGAD</td>
<td>FACED</td>
<td>KNOIL</td>
<td>PIPER</td>
<td>TAXER</td>
</tr>
<tr>
<td>BELGA</td>
<td>FADED</td>
<td>LEASE</td>
<td>PRAHIL</td>
<td>TICKS</td>
</tr>
<tr>
<td>BIDE</td>
<td>FAKED</td>
<td>LEMAN</td>
<td>PULEX</td>
<td>TRETS</td>
</tr>
<tr>
<td>BUKED</td>
<td>FAMED</td>
<td>LIKEN</td>
<td>RE-EAT</td>
<td>TROTS</td>
</tr>
<tr>
<td>BIPED</td>
<td>FARCE</td>
<td>LIMEN</td>
<td>RHINO</td>
<td>TUSKY</td>
</tr>
<tr>
<td>BOGIE</td>
<td>FARED</td>
<td>LINEN</td>
<td>RINGS</td>
<td>UNAPT</td>
</tr>
<tr>
<td>BOTCH</td>
<td>FATED</td>
<td>LIVEN</td>
<td>RIVET</td>
<td>UNIFY</td>
</tr>
<tr>
<td>BOWIE</td>
<td>FELID</td>
<td>LUNGS</td>
<td>ROAMS</td>
<td>VALET</td>
</tr>
<tr>
<td>BRAND</td>
<td>FETID</td>
<td>MOPER</td>
<td>ROOMS</td>
<td>VANIR</td>
</tr>
<tr>
<td>CELIA</td>
<td>FRATE</td>
<td>MOVER</td>
<td>SCRIP</td>
<td>VERSO</td>
</tr>
<tr>
<td>CHELA</td>
<td>GAMIC</td>
<td>MOWER</td>
<td>SETON</td>
<td>VIBEX</td>
</tr>
<tr>
<td>CHIDE</td>
<td>GAMMA</td>
<td>NADEL</td>
<td>SHAFT</td>
<td>VITEX</td>
</tr>
<tr>
<td>CLIFF</td>
<td>GENIE</td>
<td>NODES</td>
<td>SHIFT</td>
<td>VIVOS</td>
</tr>
</tbody>
</table>

THE JOURNAL OF RECREATIONAL LINGUISTICS
COCCI GOOSE NOSES SHORN WADIS
CRANE GORKI NOTES SORER WHIPS
CRONE GORSE NOYAU SPADY WHOPS
DANGE GOWAN OPAHS SPENT YOGAS
DOUGH GRAVE OVENES START ZEISS
DROVE GRAVE PATEN TAKER ZINKY

6-LETTER WORDS

AGENDA ENLOCK LONDON PRONTO SPIGOT
ALL-RED ENOUGH LOPPER PUDENT STAMPS
AMENDES ENSATE MERMEN PUKERS STOUPS
A-MIRED EOLIAN MINISH QUARLS SUIVEZ
ARCTIC FLORAL MINUTE RAMCAT TAILYE
ASSUME FUNISH MOHAIR RATHER TEMSL
ATAXIC FURZEN MOOTER RETOES TENSES
ATHROB GENERA MORMON SANGER TEREKS
AURATE HACKED MOSES SCALAR TILTHS
AVOWEL HALTED NAMING SEINES UNGOWN
BYPATH IMPURE OCULAR SENSES UNGOWN
CHIMED KNAWEL OMENER SERMON VELVET
CUDGEL LAWING OPTANT SEYTON VENDOR
DECADe LAWMAN PACING SHIRES WAIVER
DISCAL LOGGER PHONER SILVER WAXENS
EIDOLA LOLLER POISON SIGNET WEAPON

7-LETTER WORDS

ALIGNED DUSTIER ICE-CARE PADDICK SALTISH
APE-BRED EMBRUED ICE-LAKE PAULISH SANDIER
APEPSIA EPILATE ICE-RACE PAWKIER SCORNER
ATONING ETCHING ICE-SPEE PAWNDOM SCUTTER
AUK-MATE EXULTER INN-BEAR PERMUTE SEA-ROSE
AXE-WIPE FANGED INN-YARD PICKER SEETHER
BENCHES FAR-SPED IO-DISH PIE-DISH SIDE-WAR
BENDAGE FAT-BRED JETTING PIGGIER SIKHISM
BLUNDEN FIG-HUED JOKYISH PIPELET SINK-KIT
BODY-RED FOIL-MAN JOBWISE PITTISM SINK-SET
BOY-PAIN FOULARD JUNGISM PLEDGET SIX-DOOR
CASKAGE FOWLISH KENT-MAN PLUMCOT SKELTER
CHILLED FROWARD LAB-BRED POOL-WET SKEFUL
CHOIRED GARLAND LABORED POPLARS SMATTER
CHOP-RED GENERIC LAB-RACK PORTIFY SNOW-WAY
CHOW-RED GIRL-MAN LARVATE POTTERS SOMEWAY
CO-BASED GOTHISH LATHING PRECANT SOUL-ROT
COGLIKE GRACING LIBRATE PRONOUN SUMMARY
COMBINE GRADING LIDING PRO-POOR SUN-HOST
CORN-MA GRATING LOCKETH PUNK-BOX TANGLER
COSTING GRAVING MAMMOCK QUASARS TENTFUL
COWWISE HAND-RED MINTISH RAPTURE TITTERS

WORD WAYS

Any number of letters, at least four,
is the square root of.
SHALALALALALALALALALALALALALALAL
hastes,"

Interested in
JONATHAN
name. Oliver (1880). Recho
prenter's
York, 19
(See Vol.
Continued
with title AY
The In
AYYEL.

What?
Any number of authorities will inform you that the longest name in the Bible is the symbolic name of the second son of Isaiah, the 18-letter MAHER-SHALAL-HASH-BAZ (Isaiah 8:1). It means, "The spoil speeds, the prey hastens," and its import is that the doom of Syria and Ephraim is irrevocable.

Continuing our search, we find that the caption of Psalm 22 includes the title AIJELETH HASH-SHAHAR ("the hind of the dawn"), an 18-letter term. The Interpreter's Dictionary of the Bible supplies the 20-letter variant 'AL-AIYELETH HASH-SHAHAR.

What reader will be the first one to unearth a 21-letter Bible name?