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Abstract 
Infertility is a prevalent issue in the United States, impacting 1.5 million women 

(1). A possible cause of infertility is defects in gametogenesis, or the formation of sperm 

and egg. Therefore, understanding the basic mechanisms that promote normal gamete 

formation could impact our understanding of infertility. The Drosophila melanogaster 

egg develops from an organ-like structure called an egg chamber. The egg chamber is 

composed of a central cluster of 16 germ cells that are connected to one another by 

intercellular bridges, called ring canals. These ring canals are composed of filamentous 

actin and allow the transfer of materials from supporting nurse cells to the developing 

oocyte. The ring canals form during early oogenesis and then expand 20-fold. Defects in 

ring canal formation or expansion can lead to infertility. The purpose of this project was 

to determine the role of the SH2/SH3 adaptor protein, Dreadlocks (Dock), in the germline 

ring canals of the developing Drosophila egg. Dock is involved in the formation of other 

actin-rich structures and has been shown to interact with other known ring canal proteins; 

thus, I examined whether depletion or mutation of Dock affected the process of nurse cell 

dumping or the size of the ring canals throughout development. Depletion of Dock by 

RNA interference (RNAi) caused an over-expansion of the outer diameter of the ring 

canals in egg chambers between the stages of 6 and 10b of oogenesis. Reducing Dock 

levels also enhanced the phenotype caused by depletion of two other ring canal 

components, the kinase Misshapen or the Arp2/3 complex. This led me to propose that 

Dock functions with Misshapen and the Arp2/3 complex to promote normal ring canal 

expansion and stability. Because of the conserved nature of these intercellular bridges 

and the proteins being studied, this work could provide significant insight into 

gametogenesis in higher organisms. 
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Introduction 

 

Intercellular Bridges in Gametogenesis  

 Gametogenesis, or the formation of egg and sperm, is essential for proper 

development. In most sexually reproducing organisms, the developing germ cells go 

through a stage in which they are connected to other developing germ cells or to 

supporting cells through intercellular bridges. Intercellular bridges are formed through 

incomplete cytokinesis. At the end of mitosis, the two daughter cells are connected by a 

thin cytoplasmic connection, the intercellular bridges. However, this bridge is short-lived 

in most somatic cells, quickly being cleaved by a syntaxin2 and endobrevin/VAMP8-

dependent mechanism. However, in germ cells the intercellular bridges can be 

maintained in order to provide a method for materials to be moved between developing 

germ cells or from supporting cells (2). 

 Intercellular bridges are conserved in a wide variety of organisms, ranging from 

insects to humans, and are essential for the maturation of both sperm and egg. 

Intercellular bridges allow for synchronization of mitotic cell divisions in male mice. 

Intercellular bridges allow developing sperm to remain phenotypically diploid, despite 

being genetically haploid, by sharing gene products (3). Mutation of testis-expressed 

gene 14 (TEX14) results in the absence of intercellular bridges and male sterility in male 

mice (2), which highlights the important role these intercellular connections play in 

fertility. Intercellular bridges are especially important during the process of oogenesis, 

where large amounts of proteins, RNAs, and organelles must be loaded in order to 

support early development. The oocyte itself is unable to carry out many essential cellular 

functions, such as glycolysis or amino acid transport, due to its low level of 
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transcriptional activity (4, 5). Therefore, the developing egg is dependent on supporting 

germ cells to provide nutrients for its proper development (4). In some organisms, like 

the frog, Xenopus laevis, the germ cell nest contains oocytes connected to one another by 

intercellular bridges (6). In other organisms like the mouse and the fly, Drosophila 

melanogaster, the developing oocyte receives nutrients from supporting germ cells by 

using intercellular bridges (7, 5). These intercellular bridges are essential for intercellular 

communication; disruption of intercellular communication halts oocyte development and 

results in premature ovulation and subsequent degradation of the oocyte (4, 7). Although 

intercellular bridges are essential for fertility in many organisms, there is still much to be 

learned about how intercellular bridges are formed, stabilized, and remodeled during 

gametogenesis.     

 The developing fruit fly egg provides an excellent model system to study 

intercellular bridges during oogenesis. Because mammalian oogenesis occurs in the 

embryo, attempting to study the role of intercellular bridges in higher organisms is 

challenging. The intercellular bridges found in the developing D. melanogaster egg 

chamber are some of the largest and most well-characterized that have been observed (5). 

Female flies can lay up to 100 eggs per day and larvae develop into adults within 10 days 

when kept at 25°C (8). In addition to their rapid development, many powerful genetic 

tools have been developed in the fly that allow precise manipulations to be easily 

performed (9).  

 

 

 



8 
 

Figure 1: Eight of the fourteen morphological stages of egg chamber development. 

Images are of control egg chambers. Flies were kept on yeast at 29˚C for 72 hrs prior to 

dissection.  
 

Egg Chamber Development  

 Each fruit fly egg develops from a multicellular structure called an egg chamber. 

The D. melanogaster egg chamber is composed of a central cluster of germ cells (1 

oocyte and 15 supporting nurse cells) surrounded by a layer of approximately 1000 

somatic epithelial cells called follicle cells. Egg chambers will progress through 14 

distinct morphological stages prior to becoming a mature egg (Fig. 1). The egg chamber 

is initially spherical but will begin to elongate starting at stage 5, and it will undergo a 

thousand-fold increase in volume throughout maturation (10). Egg chamber formation 

begins in the germarium with the asymmetrical division of a germline stem cell, which 

gives rise to a cystoblast cell. The cystoblast will then undergo four rounds of mitosis 

followed by incomplete cytokinesis to produce a germ cell cyst (11). At the end of 

mitosis, instead of completing cytokinesis and physically separating the two daughter 

cells, the connection between the two cells is maintained by the recruitment of additional 

filamentous actin (f-actin) and actin binding proteins, forming a stable intercellular 
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bridge, or ring canal. After the four rounds of division, the germ cell cluster will contain 

16 interconnected cells; two cells will have four ring canals (one of which will become 

the oocyte), two cells will have three ring canals, four cells will have two ring canals, and 

the remaining eight cells will each have a single ring canal. The size of the ring canals 

varies slightly based on their age; the youngest ring canals, which are near the periphery 

of the egg chamber, are the smallest, whereas the more centrally localized ring canals are 

older and slightly larger (5). Once they are formed, the ring canals will expand 

throughout oogenesis. 

 Transfer of materials through the ring canals occurs throughout oogenesis. During 

the early stages, there is a slow transfer of materials from the nurse cells to the oocyte, 

which depends on the action of microtubule-based motors.  At stage 11, a bulk 

cytoplasmic transfer from the nurse cells to the oocyte, known as nurse cell dumping, 

occurs; this leads to a doubling of the oocyte volume over a period of 30 minutes (12). 

The growth and structural integrity of the ring canals is essential during this process to 

prevent the nurse cell nuclei from being dumped along with their cytoplasmic contents.  

 Throughout oogenesis, the ring canals expand ~20-fold in diameter; this 

expansion can be divided into two distinct phases. During the first phase, through stage 5, 

the diameter of the ring canals does not increase substantially (from only 0.65 µm to 1.53 

µm); however, they become thicker due to an increase in the number of actin filaments 

(from 82 filaments at stage 2 to 717 filaments at stage 6). During the second phase, 

beginning at stage 6, the diameter of the ring canals increases considerably (from 2.3 µm 

at stage 6 to 10 µm at stage 11), but the number and density of actin filaments remains 

fairly constant (~700-770 filaments/ring canal with a density of 4000-5000 
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filaments/µm2). During the second phase (beginning around stage 6), the actin is 

reorganized to form a net of actin bundles, which has been compared to a fisherman’s 

net; this reorganization may allow the ring canals to expand without requiring a dramatic 

increase in actin filament number. Overall, there is a 134-fold increase in the length of 

the f-actin filaments and an increase in the number of filaments from 80 to 700 per ring 

canal (5); therefore, understanding how actin filament nucleation and growth are 

controlled during oogenesis is essential.   

 

Activity of the Arp2/3 Complex and Misshapen are required for proper ring canal 

growth 

A number of different proteins have been identified that localize to the ring canals 

and promote their formation and/or growth (13, 14, 15, 16), and many of those directly or 

indirectly regulate actin. One important actin regulator is the Arp2/3 complex, which 

promotes the formation of branched actin networks. The Arp2/3 complex is composed of 

seven different subunits: Arp2, Arp3, and ArpC1-ARPC5 (17). Although the Arp2/3 

complex is not required for the initial formation of the ring canal, it is essential for ring 

canal expansion. Mutation of members of the Arp2/3 complex, such as Arpc1 or Arp3, 

leads to failure of ring canal expansion (reported to begin around stage 5/6), defects in 

nurse cell dumping, formation of a smaller egg, and female sterility. The ring canals in 

mutant egg chambers at stage 10a were up to 30% smaller in diameter (18). Although it is 

known that the Arp2/3 complex is required for ring canal growth, there is still much to be 

learned about how the activity of this complex is regulated during oogenesis. 
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Activation of the Arp2/3 complex requires phosphorylation of the Arp2 subunit. 

The Nck-interacting kinase, or NIK, has been shown to phosphorylate and activate the 

Arp2/3 complex (19). The Drosophila homolog of NIK is the Ste20 family kinase, 

Misshapen (Msn), which localizes to the ring canals. If Msn is depleted from the 

germline by RNA interference (RNAi) or if a membrane-tethered form of Msn (Myr-

Msn) is expressed, this leads to significant defects in ring canal expansion, signs of 

collapsed ring canals, and defects in nurse cell dumping (A. Kline data not shown), which 

resembles the phenotypes observed in the Arp2/3 mutant egg chambers (5). Therefore, 

Misshapen could activate the Arp2/3 complex to promote ring canal expansion. 

Full activation of the Arp2/3 complex not only requires phosphorylation but also 

binding to a nucleation promoting factor, or NPF. There are two different types of NPFs 

that are classified based on the presence or absence of a complete VCA domain.  The 

VCA domain is made up of three sections: a verprolin-homology, cofilin-homology, and 

acidic domain. Type 1 NPFs (SCAR, WASP, WASH, JMY in flies) have a complete 

VCA domain, whereas Type 2 NPFs simply have an acidic domain (17). Analysis of NPF 

function in the germline revealed that only mutation of SCAR altered ring canal structure, 

leading to signs of collapsed ring canals (20). Therefore, this suggests that SCAR is the 

primary activator of the Arp2/3 complex and is necessary to promote ring canal 

expansion or stability.  

The SH2/SH3 adaptor protein, Dreadlocks (Dock), could provide an important 

link between Misshapen, SCAR, and the Arp2/3 complex. During fly spermatogenesis, 

sperm differentiation is promoted by the recruitment of Dock to the ring canals in 

primary spermatocytes (21). Dock physically interacts with Msn (22), and while these 
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two proteins genetically interact during the final step of gastrulation (dorsal closure) in 

Drosophila, their interaction is not required for photoreceptor development in the eye 

(23). Dock also physically interacts with SCAR, and genetic analysis has demonstrated 

that this interaction promotes the fusion of two myoblast types in the formation of the 

body wall musculature (24). Here, we show that Dreadlocks localizes to the germline ring 

canals, and depletion of Dock leads to an increase in ring canal diameter. Further, partial 

reduction of Dock levels significantly enhances depletion of the Arp2/3 complex 

member, ArpC1, or the kinase, Msn. Therefore, we hypothesize that Dock cooperates 

with Msn to regulate ring canal growth through interaction with the Arp2/3 activator, 

SCAR.  

 

Thesis Research and Hypothesis  

 Intercellular bridges are an evolutionarily conserved structural feature that is 

essential for fertility in many organisms from insects to mammals (6). Despite the 

importance of these structures, there is still much to be learned about the proteins 

required for proper growth and expansion of these actin-rich structures. The developing 

Drosophila melanogaster egg provides an excellent model system to study intercellular 

bridges due to their large size, wide range of genetic tools available, and their fast 

generation time (8). We have identified a novel ring canal protein, the SH2/SH3 adaptor 

protein, Dreadlocks (Dock). Although Dock has been studied in the development of other 

actin-rich structures, its role in growth and expansion of the ring canal has not yet been 

explored (24). Dock physically and genetically interacts with the kinase Misshapen in 

other contexts and has also been shown to physically interact with the Arp2/3 activator 
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SCAR in the formation of the body wall musculature (22, 23, 24). Both the Arp2/3 

complex and Misshapen are essential for normal ring canal expansion and stability. 

Therefore, I hypothesized that a reduction in the levels of Dock would lead to improper 

expansion of the ring canals. Interestingly, I found that depletion of Dock leads to 

significant over-expansion of the ring canals, which is a phenotype that has only been 

described with one other mutation. Genetic experiments suggest that Dock could 

cooperate with Misshapen and the Arp2/3 complex to promote normal ring canal 

expansion and stability.  
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Materials and Methods  

GAL4/UAS System 

To characterize the role of specific proteins in germline ring canal formation 

and/or growth, target proteins were depleted from the germline of the developing 

Drosophila egg chamber using the GAL4/UAS system. GAL4 is a yeast-specific 

transcription factor that will bind to the enhancer element UAS (upstream activating 

sequence), effectively turning on expression of genes downstream of that UAS (9). The 

expression of GAL4 protein can be controlled by tissue-specific promoters, and 

thousands of different GAL4 “driver” lines are available from the Bloomington 

Drosophila Stock Center (BDSC). Two different germline-specific GAL4 lines were 

used in this study – the maternal triple driver, or MTD-GAL4, which contains three 

different GAL4 transgenes (otu-GAL4; nanos-GAL4; nanos-GAL4) or the single nanos-

GAL4 driver line. The MTD-GAL4 line expresses GAL4 throughout oogenesis 

beginning in the germline stem cells, whereas the nanos-GAL4 line initially expresses 

GAL4 in the germline stem cells, shows a drop in GAL4 expression during early/mid 

oogenesis, and then expression of GAL4 resumes around stage 5 (25). These GAL4 

driver lines were crossed with Drosophila UAS-RNAi lines, which drove expression of a 

short hairpin RNA (shRNA) that was complementary to the target mRNA. The shRNA is 

processed into 20 nucleotide long fragments by the enzyme, Dicer. The antisense strand 

of these fragments is incorporated into the RNA-induced silencing complex (RISC) and 

will act as a degradation template (26). This causes the target mRNA to be degraded and 

due to protein turnover, the target protein will be depleted specifically within the 
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germline. Here, the germline drivers were crossed to stocks containing UAS-Dock-RNAi, 

UAS-Msn-RNAi, and UAS-ArpC2-RNAi transgenes.  

Drosophila melanogaster Conditions 

 All fly stocks were stored at 25°C; at this temperature, flies had a generation time 

of 10-12 days (9). Flies were maintained on cornmeal molasses food, consisting of 

cornmeal, molasses, yeast, Tegosept, and propionic acid. Crosses were set up by 

combining virgin females from one stock and male flies from another stock in a new vial 

with ground active dry yeast and maintained at 25°C. In preparation for dissection, 

approximately 10 females and 3-5 males were placed in a vial containing cornmeal 

molasses fly food and ground yeast to increase egg production. These vials were then 

incubated at 29°C for either 50 hours (UAS-dock-RNAi x MTD-GAL4) or 72 hours (all 

other conditions) prior to dissection.  

Fly Lines Used  

Dock was depleted from the germline using the GAL4/UAS system. UAS-Dock-

RNAi/TM3 (Bloomington #43176) was crossed to either the maternal triple driver (otu-

Gal4; nanos-Gal4; nanos-Gal4, Bloomington #31777) or nanos-Gal4 (Bloomington 

#32563). UAS-Msn-RNAi/CyO (Bloomington #42518) or UAS-ArpC2-RNAi/TM3 

(Bloomington #43132) was crossed to nanos-Gal4. White-eyed flies, w1118, are 

commonly used as a background when producing transgenic flies; thus, w1118  flies were 

crossed to either the maternal triple driver or nanos-Gal4 to serve as a negative control. 

Progeny with the desired genotype were identified by selecting against the balancer 

chromosomes, which contained dominant mutations for curly wings (CyO) or stubble 

(TM3). Dock levels were reduced by crossing a line containing a heterozygous dock 
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mutation with nanos-GAL4 (dock04723FRT40/Cyo; nanos-GAL4 ) to either control (w1118), 

UAS-msn-RNAi, or UAS-ArpC2-RNAi. 

Dissection Protocol  

Ovaries from females of the appropriate genotypes were dissected in Schneider’s 

S2 media using a stereomicroscope and two pairs of forceps. The ovaries were fixed 

using a 4% formaldehyde solution (in PBS) and washed with PBT (PBS + 0.1-0.3% 

Triton X-100). They were then stained with TRITC-conjugated phalloidin (ECM 

Biosciences) to visualize the actin, DAPI (Life Technologies) to visualize the DNA, or an 

antibody against Hts-RC (1:20, DSHB) or Dock (1:200, (27)) to visualize the ring canals. 

Tissues were mounted on slides using Slowfade Antifade (Invitrogen). Tissues were 

mounted on slides using Slowfade Antifade (Invitrogen).  

Microscopy and Image Analysis  

 z-stacks of the egg chambers were acquired using a compound fluorescent 

microscope (Leica DM5500) and LASX software. Measurements were performed using 

the line tool in Fiji. The number of ring canals was also assessed to determine whether 

ring canal collapse had occurred. To compare differences in ring canal diameter, egg 

chambers were staged by monitoring changes in follicle cell morphology and DNA. For 

each stage, the average outer diameter of the ring canals was determined as well as the 

standard deviation of the means. To identify significant difference between two 

conditions, a two-sample t-test was conducted.  
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Results 

  

Dock localizes to the ring canals and depletion of Dock leads to ring canal 

overexpansion  

  Our lab has found a novel role for the Ste20 kinase, Misshapen, in the stability 

and growth of the germline ring canals. Because Misshapen and Dock physically and 

genetically interact in other contexts, we wanted to determine whether Dock localizes to 

the ring canals as well. Egg chambers stained with phalloidin and an α-dock antibody 

(27) showed that Dock localizes to the ring canals beginning during early oogenesis (Fig. 

2A). Dock was then depleted using RNAi under the control of the maternal triple driver 

(MTD-Gal4), which provides strong GAL4 expression throughout oogenesis (25). Ring 

canals were significantly overexpanded between stages 6 to 10a of oogenesis; there was a 

slight difference in the average diameter at stage 10b, but it was not significant (Fig. 2B, 

C). The largest difference in ring canal size was observed in stage 10a egg chambers. At 

this stage, ring canals from control egg chambers had an average outer diameter of 6.83 

µm, whereas ring canals from the dock-RNAi egg chambers showed an average outer 

diameter of 7.81 µm.  

 The maternal triple driver provides fairly uniform expression of GAL4 throughout 

oogenesis Therefore, we wanted to determine whether depletion of Dock using the single 

nanos-Gal4 driver, which expresses GAL4 in the germline stem cells and then again 

around stage 5 (25), would show the same phenotype. Although the nanos-GAL4 driver 

likely provides a weaker depletion, ring canals were still significantly over-expanded in 

dock-RNAi egg chambers from stages 6 through 10b of oogenesis (Fig. 2D). Ring canals 

in stage 10b dock-RNAi egg chambers had an average outer diameter of 7.51 µm, 
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compared to 7.05 µm of control ring canals. Because the dock-RNAi phenotype was 

reproducible, but not as strong as other ring canal perturbations, we combined Dock 

depletion with a heterozygous mutation in dock04723, to see if we could enhance the 

phenotype. While ring canals in both dock04723/+ and dock-RNAi; dock04723/+ egg 

chambers were significantly overexpanded in comparison to controls, enhancement of the 

heterozygous mutation was not observed when Dock was also depleted by RNAi at most 

stages (Fig. 2E). Taken together, these data suggest that Dock is required to regulate ring 

canal size and prevent over-expansion.  
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Figure 2: Dock localizes to the ring canals and reduction of Dock levels leads to 

significantly over-expanded ring canals. (A) Transverse confocal section of egg 

chambers stained with phalloidin (top panel) and α-dock antibody (bottom panel). Dock 

localizes to the germline ring canals (arrowhead). Scale bar is 10 μm. (B) Ring canals in 

stage 9 control and Dock-depleted egg chambers. w
1118

 or UAS-dock-RNAi were crossed 

to MTD-Gal4. Flies were kept at 29°C for 50 hrs prior to dissection. Scale bar is 5 μm. 

(C) Average outer diameter of ring canals in Control and Dock-depleted egg chambers 

from stage 6 through 10b (20x objective). w
1118

 or UAS-dock-RNAi crossed to nanos-

Gal4. Flies were kept at 29°C for 72 hrs prior to dissection.. (D) Average outer diameter 

of ring canals in Control and Dock-depleted egg chambers from stage 6 through stage 10b 

(40x objective). w
1118

 or UAS-dock-RNAi crossed to MTD-Gal4. Flies were kept at 29°C 

for 50 hrs prior to dissection (E) Average outer diameter of ring canals in Control, 

dock
04723/+ , and dock

04723/+ ; dock-RNAi
 
egg chambers from stage 7 through stage 10b 

(20x objective). Lines were crossed to nanos-Gal4. Flies were kept at 29°C for 72 hrs 

prior to dissection. For (C), (D), and (E) n≥33 ring canals and n≥3 egg chambers for most 

conditions at each time point. Error bars represent standard deviation. Single asterisk 

indicates difference compared to Control (w
1118

); double asterisk indicates significant 

difference from all other conditions at that timepoint (t-test, p<0.05).  
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Reducing Dock levels enhances the msn-RNAi phenotype 

 Based on established connections between Misshapen and Dock and the recently 

characterized role for the homolog of Msn, NIK, in phosphorylating the Arp2/3 complex, 

genetic interactions between Msn and Dock were further investigated. Depletion of Msn 

by RNAi under the control of the MTD-Gal4 driver led to ring canals with significantly 

larger outer diameters than those in controls from stages 6 through 10b (Fig. 3A) 

Previous experiments have shown that depletion of Msn using the MTD-GAL4 driver 

leads to smaller ring canals and signs of collapse. This difference could be due to the 

small sample size in this experiment. Co-depletion of both Dock and Msn by RNAi under 

the control of the nanos-Gal4 driver also led to significantly expanded ring canals from 

stages 6 through 10a (Fig. 3B). While the difference at stage 10b was not significant, ring 

canals were still larger in msn-RNAi & dock-RNAi egg chambers than controls. An 

examination of average outer ring canal diameter at stage 9 for control, dock-RNAi, msn-

RNAi, and msn-RNAi & dock-RNAi egg chambers showed that ring canals were 

significantly larger in the co-depleted egg chambers in comparison to all other conditions 

(Fig. 3C). Ring canals in egg chambers depleted of both Msn and Dock had an average 

outer diameter of 7.42 µm, while those in egg chambers depleted of solely Msn or Dock 

had diameters of 6.88 or 6.72 µm, respectively. 

The relationship between Msn and Dock was further examined by reducing Dock 

levels with a heterozygous mutation in msn-RNAi egg chambers (msn-RNAi, dock04723). 

Consistent with the RNAi data, ring canals in msn-RNAi, dock04723 egg chambers had a 

significantly larger outer diameter than those in msn-RNAi, dock04723/+, or control egg 

chambers (Fig. 3). However, there were no signs of ring canal collapse. This data 
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suggests that Msn and Dock could function within the same pathway to promote normal 

ring canal expansion. 

 

  

 

Figure 3: Reducing Dock levels enhances the msn-RNAi phenotype.(A) Average outer 

diameter of ring canals in Control and Msn-depleted egg chambers from stage 6 through 10b 

(20x objective).  w
1118  

and UAS-msn-RNAi were crossed to nanos-Gal4. n≥22 ring canals and 

n≥2 egg chambers for most time points. (B) Average outer diameter of ring canals in Control 

egg chambers and those depleted of both Msn and Dock from stage 6 through 10b. All lines 

were crossed to nanos-Gal4. n≥22 ring canals and n≥2 egg chambers for most time points. (C) 

Average outer diameter in stage 9 Control, Dock-depleted, Msn-depleted, or Msn- and Dock-

depleted egg chambers. All lines were crossed to nanos-Gal4. n≥55 ring canals and n≥5 egg 

chambers for each time point. (D) Average outer diameter of ring canals in Control, 

dock
04723

/+, msn-RNAi, and msn-RNAi, dock
04723

 egg chambers from stage 6 through 10b. All 

lines crossed to nanos-Gal4. n≥88 ring canals and n≥8 egg chambers for most time points. (E) 

Ring canals in stage 10b msn-RNAi and msn-RNAi, dock
04723

 egg chambers. Lines were 

crossed to nanos-Gal4. Scale bar is 5 μm. For all figures, flies were kept at 29°C for 72 hrs 

prior to dissection. Error bars represent standard deviation. Single asterisk indicates 

significant difference compared to Control (A, B, C) or dock
04723

/+ (D). Triple asterisk 

indicates significant difference from all other conditions at that timepoint (t-test, p<0.05). 
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Reducing Dock levels also enhances the arpC2-RNAi phenotype  

Another possible mechanism through which Dock could be controlling ring canal 

size is through regulation of the Arp2/3 complex. Dock was shown to interact with the 

Arp2/3 activator, SCAR, in other contexts (24), therefore, we hypothesized that Dock 

Figure 4: Reducing Dock levels enhances the arpC2-RNAi phenotype. (A) Average 

outer diameter of ring canals connecting nurse cells at various stages of development 

in Control, arpC2-RNAi, dock
04723

/+, and dock
04723

/+; arpC2-RNAi egg chambers. 

n≥44 ring canals and n≥4 egg chambers for most time points. (B) Number of 

remaining ring canals in dock
04723

/+; arpC2-RNAi egg chambers at various stages of 

development. All other conditions did not display any change in the average number of 

ring canals at each developmental stage. n> 5 egg chambers at each time point. (C) 

Ring canals in stage 9 Control, arpC2-RNAi, dock
04723

/+, and dock
04723

/+; arpC2-

RNAi egg chambers. Scale bar is 5 µm. (D) Collapsed ring canals in dock
04723

/+; 

arpC2-RNAi egg chambers. Scale bar is 5 µm. For all figures flies were kept at 29°C 

for 72 hrs prior to dissection and lines were crossed to nanos-Gal4. Error bars 

represent standard deviation. Single asterisk indicates significant difference compared 

to Control (w
1118

); triple asterisk indicates significant difference from all other 

conditions at that timepoint (t-test, p<0.05).  
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could promote Arp2/3 activation in the context of ring canal expansion as well. Depletion 

of the Arp2/3 complex member, ArpC2, using the nanos-GAL4 driver led to an 

expansion of the outer diameter of the ring at all stages measured expect stage 6. By stage 

10b, ring canals had expanded in arpC2-RNAi egg chambers to an average outer diameter 

of 8.76 µm, compared to 7.14 µm in controls (Fig. 4A,C). Depletion of ArpC2 

throughout oogenesis using the maternal triple driver led to a significant decrease in the 

average outer diameter and a significant amount of ring canal collapse (28); therefore, 

this weaker phenotype provides a sensitized background to look for enhancement or 

suppression by a Dock mutation. As was shown previously (Fig. 2E), reducing Dock 

levels with a heterozygous mutation (dock04723) led to expansion of the ring canals in egg 

chambers between stages 6 through 10b of oogenesis. However, when Dock levels were 

reduced in the arpC2-RNAi egg chambers (dock04723/+; arpC2-RNAi), there was a 

dramatic effect on ring canal stability. Egg chambers in most stages analyzed had, on 

average, 3 collapsed or missing ring canals (Fig. 4B, D), a phenotype that was not 

observed in any of the other conditions, but which is strikingly similar to that observed 

with a stronger depletion of ArpC2 using the MTD-GAL4 (28). Interestingly, the 

remaining ring canals in the dock04723/+; arpC2-RNAi egg chambers were partially 

rescued in their size. Although additional experiments will be necessary to understand 

how this condition alters ring canal size, this data suggests that Dock and the Arp2/3 

complex could function within the same pathway to promote ring canal stability.  
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Discussion 

 In Drosophila melanogaster, egg chamber development is dependent on the 

transfer of materials from supporting nurse cells to the oocyte through intercellular 

bridges (2). The growth and expansion of these intercellular bridges is tightly regulated 

by many different proteins (13, 14, 15, 16). Here we have characterized a novel role for 

the SH2/SH3 adaptor protein, Dreadlocks, in regulation of the germline ring canals. Dock 

localizes to the ring canals, and a reduction in Dock levels leads to a significant over-

expansion of ring canal outer diameter (Fig. 2, 4).  

 

Depletion of Dock leads to a modest, yet consistent expansion of the germline ring 

canals  

 RNAi-based depletion of Dock from the germline using either the maternal triple 

driver, which expresses GAL4 throughout oogenesis, or the single nanos-GAL4 driver, 

which expresses GAL4 in the germarium and then again after stage 5, led to a similar, 

significant expansion in ring canal outer diameter at most stages. This suggests either that 

there is perdurance of the RNAi effect during early oogenesis in the nanos-GAL4 

experiment, or that the dock-RNAi over-expansion phenotype results from depletion of 

Dock in the germline stem cells or after stage 5, but that Dock protein is not essential during 

the middle stages of oogenesis (from ~stage 2-5). To distinguish between these two 

possibilities, additional experiments using other GAL4 driver lines will be required, for 

example using the mat4-GAL4, which is not expressed until stage 2 of oogenesis, after 

the egg chamber has budded from the germarium (29). 



25 
 

 Our data demonstrates that Dock appears is necessary to prevent ring canal over-

expansion; yet the question remains how over-expansion impacts fertility. Thus far, the 

only other protein known to negatively regulate ring canal growth is Parcas (Pcs). 

Homozygous pcs mutants display over-expanded ring canals, and mutation of Parcas was 

able to rescue a ring canal expansion defect observed in Btk29 mutants. Btk29, a known 

ring canal protein, was recently shown to promote ring canal expansion through negative 

regulation of cadherin-based cell-cell adhesion. The model put forth was that Pcs 

negatively regulates Btk29A to promote normal ring canal expansion (30). The presence 

of negative regulators of ring canal expansion suggests that over-expansion can have 

detrimental effects on proper oocyte development, perhaps by causing ring canal 

instability. Additional experiments will be necessary to directly test whether Dock is 

required for fertility. Further, additional experiments could explore whether Dock could be 

either interacting with or recruiting Parcas to the ring canals as a way of negatively 

regulating Btk29A. Parcas contains an SH3-binding domain (31), which could mediate 

binding to one of Dock’s SH3 domains. Btk29 and Msn have been shown to physically 

interact (22); therefore, it is possible that Dock, Msn, Btk29, and Parcas form a network to 

promote activation of Arp2/3 and to down-regulate cadherin-based adhesions during ring 

canal expansion (Fig. 5).  

  

Dock, Misshapen, and the Arp2/3 complex likely cooperate to promote ring canal 

expansion and stability  

Based on connections between Dreadlocks and Misshapen in other developmental 

contexts (22, 23), we wanted to test whether the two could be functioning together in the 
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germline. Misshapen also localizes to the ring canals, and depletion of Misshapen protein 

throughout oogenesis using the maternal triple driver led to a significant changes in ring 

canal diameter and evidence of ring canal collapse (A. Kline data not shown). Interestingly, 

depletion of Msn in the germline stem cells and then after stage 5 using the nanos-GAL4 

driver led to a significant increase in ring canal outer diameter (Fig. 3D) without evidence 

of ring canal collapse, which resembled depletion of Dock. To determine whether Dock 

and Misshapen could function within the same pathway to promote proper ring canal 

expansion, Dock levels were reduced in msn-RNAi egg chambers (msn-RNAi, dock04723). 

Reducing Dock levels significantly enhanced the msn-RNAi phenotype, leading to an even 

greater over-expansion (Fig. 3D); however, it did not lead to ring canal instability and 

collapse. This suggests that Misshapen and Dock could function within the same pathway 

(Fig. 5), but that Misshapen is likely involved in Dock-independent pathways as well.  

One additional connection that was explored was to the Arp2/3 complex, which is 

essential for ring canal expansion and stability (18). The homolog of Msn, NIK, has been 

shown to phosphorylate and activate the Arp2/3 complex (19), and the Arp2/3 activator, 

SCAR physically and genetically interacts with Dock (24). Therefore, Dock and Msn could 

be cooperating to activate the Arp2/3 complex at the ring canal to promote expansion. 

Depletion of the Arp2/3 complex member, ArpC2, using the nanos-GAL4 driver led to a 

similar ring canal expansion (Fig. 4A). Interestingly, when Dock levels were reduced in 

arpC2-RNAi egg chambers (dock04723/+;arpC2-RNAi), there was a synergistic defect in 

ring canal stability, with egg chambers at all stages analyzed displaying collapsed ring 

canals (Fig. 4B). This phenotype resembles a stronger depletion of ArpC2 throughout 

oogenesis using the maternal triple driver. Overall, these data suggest that Dock, Msn, and 
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the Arp2/3 complex play a minor role in the first phase of normal ring canal morphogenesis, 

prior to stage 5. Reducing the levels of any one of them individually from the germline 

stem cells leads to a modest expansion of the ring canals. Misshapen and the Arp2/3 

complex additionally play an essential role during later stages, as depletion throughout 

oogenesis leads to failure of ring canal expansion and collapse.  

Greater insight into these differences could be gained by assessing the effects of 

Dock depletion or over-expression on the localization of the Arp2/3 activator, SCAR. If 

one important role for Dock is to promote SCAR localization to the ring canals (Fig. 5), 

then depletion of Dock should lead to lower levels of SCAR and thereby a decrease in 

Arp2/3 activity. However, because depletion of Dock alone does not resemble a strong 

depletion of the Arp2/3 complex member, ArpC2, using the MTD-GAL4 line, it suggests 

that there might be alternative mechanisms to activate Arp2/3 at the ring canals. However, 

the observation that reducing Dock levels in egg chambers “weakly” depleted of ArpC2 

resembles a stronger depletion of ArpC2 using the MTD-GAL4 line suggests that the 

alternative Arp2/3 activation mechanism is not robust enough to compensate when levels 

of the Arp2/3 complex itself are reduced.    

Additional experiments will be necessary to determine how Dock, Msn, and the 

Arp2/3 complex cooperate to promote ring canal expansion. In order to assess the hierarchy 

of Dock, Msn, and the Arp2/3 complex, it will be important to determine how over-

expression of Dock affects ring canal structure. I have created two different fly lines that 

overexpress an affinity-tagged, wild-type form of Dock (UAS-HA-Dock) or a membrane-

tethered, affinity-tagged form (UAS-Myr-HA-Dock). HA is a region of the influenza 

hemagglutinin protein that allows us to monitor the localization of these over-expressed 
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proteins. Preliminary qualitative analysis indicates that overexpression of HA-Dock, 

especially under the control of the maternal triple driver, leads to a very severe phenotype, 

much stronger than was observed in dock-RNAi egg chambers. Quantitative analysis needs 

to be performed to determine the impact on ring canal size when Dock is over-expressed 

or tethered to the membrane. Future experiments can utilize these tools to determine 

genetic and localization dependencies between Dock, Msn, and the Arp2/3 complex 

  

 

Figure 5: Two possible roles of Dock at the ring canals. (A) Dock localizes to the ring 

canal and recruits Msn. SCAR then binds to Dock and recruits the Arp2/3 complex. Msn 

phosphorylates the Arp2 subunit, thus fully activating the Arp2/3 complex. (B) Dock 

localizes to the ring canal and then binds to Pcs using its SH3 binding domain. Pcs then 

inhibits Btk29A, limiting ring canal expansion. 

 

 

 

 



29 
 

Here we described the role of Dock at the ring canals and proposed that it may be 

interacting with two previously known ring canal proteins, Msn and the Arp2/3 complex 

(Fig. 5). Intercellular bridges are largely conserved and their proper growth and expansion 

is required for fertility in D. melanogaster and male mice (2). Gaining a greater 

understanding of the protein pathways required for intercellular bridge development, and 

thus gametogenesis, provides important insight about the causes of infertility and identifies 

potential targets for infertility treatments.  
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Conclusion 

 This study characterized a novel role of the SH3/SH2 adaptor protein, 

Dreadlocks, in the growth and expansion of intercellular bridges by using D. 

melanogaster as a model system. Depletion of Dock led to a modest, but consistent, over-

expansion of the outer diameter of the ring canals. In addition, reduction of Dock levels 

in egg chambers depleted of Msn led to a significant enhancement of the single 

perturbation. When Dock was reduced in egg chambers already depleted of the Arp2/3 

complex, there was a synergistic defect in ring canal stability. Future experiments will 

need to be carried out to determine how Dock, Msn, and the Arp2/3 complex are 

interacting to regulate ring canal growth and expansion. Gaining more information about 

the protein pathway required for proper ring canal development could help to identify 

potential targets for infertility treatments in the future.   
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