




Each data file contains di↵erent sophisticated information and all of the
various files are linked together through a primary key of “primaryid”. This
relationship between the seven data files and their respective variables can
be seen below in the data diagram.

Figure 1: Data Diagram
Source. AERS, 2018.

In this report, the data files consisting of drug information, demographic
information, reaction information and outcome information are of interest.
These four di↵erent data files were merged together using a primary key
of “primaryid” and a secondary key of “caseid” since there may have been
multiple reports filed under the same primary identification code. After
merging the data files together, the new dataset contained 38 variables and
1,913,806 records.

The following variables were then removed due to duplicity, added com-
plexity, large amount of unknown values, or insignificance with respect to
the statistical goal of predicting hazardous events or reactions.

• I F cod - code for initial or follow-up status of report

• event dt - date the adverse event occurred or began
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• mfr dt - date manufacturer received initial information

• init FDA dt - date FDA received first version of the case

• fda dt - the latest manufacturer received date

• rept dt - date report was sent

• rept cod - code for the type of report submitted

• auth num - regulatory authority’s case report number

• mfr num - manufacturer’s unique report identifier

• lit ref - literature reference information

• age cod - unit abbreviation for patient’s age

• age grp - patient’s age group code

• e sub - whether the report was submitted electronically

• wt - numeric value of patient’s weight

• wt code - unit abbreviation for patient’s weight

• to mfr - whether the voluntary reporter also notified manufacturer

• reporter country - the country of the reporter in the latest version of the
case

• occp cod - abbreviation for the reporter’s type of occupation

• drug seq - the unique number for identifying a drug for a case

• val vbm - code for source of drug name

• dose vbm - verbatim text for dose, frequency, and route, exactly as entered
on report

• cum dose chr - cumulative dose to first reaction

• NDA num - NDA number

• dechal - Dechallenge code, indicating if reaction abated when drug therapy
was stopped

• dose form - form of dose reported

• drug rec act - if the event reappears upon re-administration of the drug
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When examining the variables, two in particular were chosen as response
variables - “outcome” and “reaction.” Overall, variables with date formats
were hard to incorporate into the statistical models, as many records had
incomplete dates or the date formats varied. Due to this, all variables with
date formats were removed, as shown above. Additionally, age group was
removed as the variable “age” was subsetted so only ages in terms of years
were present. Another variable – “route” – is described as the route of
drug administration, which is similar to “dose form,” and therefore “dose
form” was removed due to duplicity. Weight was a variable that would have
been important to include in the statistical models; however, there were too
many missing values to confidently include it in the training models. Dosage
amount was subsetted to avoid complex conversions and only included drugs
measured in milligrams.

After this variable reduction, twelve potentially useful variables (other
than the response variables of “outcome” and “reaction”) remained. Further
techniques of dimension reduction will be applied in an attempt to identify
the most informative variables to create the classification models used to
predict hazardous events and reactions to certain prescription drugs .

2.2 Creating Train and Test Datasets

Before decreasing the amount of variables in the dataset, the overall size of
the dataset must be reduced in order to perform statistical algorithms in a
timely manner. Due to computer and time restrictions, the entire dataset of
around 2 million records could not be used. The number of records in the
dataset had to be reduced before continuing on with creating a model.

When using prediction models, a dataset needs to be split into a “train-
ing” dataset and a “testing” dataset. The training dataset is the sample of
data used to fit or train the model. The testing dataset is the sample of data
used to provide an evaluation of the model fitted on the training dataset. It
is used to analyze how well the model performs. The training dataset usually
consists of around 80% of the records in the dataset before it is split while
the testing data sets consists of the other 20% of the records.

To accommodate for the available computational power, the dataset was
reduced to 50,000 records. The 50,000 records were randomly sampled from
the original merged records. A sample of 50,000 records was obtained for the
model predicting hazardous events. The dataset consisting of those 50,000
records was then split into separate training and testing datasets. The train-
ing dataset for fitting the hazardous events model consisted of 40,000 records
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while the testing dataset consists of 9,596 records. The testing dataset did
not consist of exactly 10,000, as there were some variable factors that existed
in the testing dataset and not the training dataset. These variable factors
had to be removed since the model developed from the training data would
not know how to predict a factor not present in fitting the modell.

When creating training and testing datasets for the model that predict
harmful reactions, the process was slightly di↵erent than simply randomly
sampling 50,000 records. The response variable (reaction) took around 2,000
di↵erent values. When testing the statistical model, it would have a di�cult
time accurately predicting so many similar reactions (i.e. headache vs. mi-
graine). To take into account this problem, the most frequently occurring
15 reactions were identified and a reduced dataset was created from only se-
lecting those top 15 reactions. These various reactions will be listed further
along in this section. This subsetted dataset consisted of 51,316 records. This
data was then randomly sampled to consist of 50,000 records and the split
to contain around 80% of records in the training dataset and 20% of records
in the testing dataset. The training dataset for fitting the harmful reactions
model consisted of 40,000 records while the testing dataset consisted of 8,656
records. As stated above, this testing dataset also did not contain exactly
10,000 records, as some variable factors existed in the testing dataset but not
in the training dataset.

2.3 Dimension Reduction

When working with large and sophisticated datasets, it is important to iden-
tify the most useful variables and utilize them to create the various statistical
models. This FAERS dataset is multifaceted, and even after removing trivial
and redundant variables, twelve variables still remained. Through the use of
dimension reduction, which decreases the high dimensionality of a dataset
through various processes, one can pinpoint the most informative variables
in the data.

A specific type of dimension reduction technique known as Principle Com-
ponent Analysis (PCA) is one of the more common algorithms to make high
dimensional data less complex. It is known as an unsupervised algorithm.
In addition to being used for dimension reduction, PCA is also helpful to
recognize the strongest patterns in a dataset and to eliminate noise points
in the data. PCA measures data in terms of their principle components –
uncorrelated variables that summarize the underlying structure of the data.
PCA then generates new variables that are linear combinations of the orig-
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inal variables. The objective of PCA is “to explain the maximum amount
of variance [in the data] with the fewest number of principal components”
(Pang-Ning Tan et al., 2017).

Usually applied to datasets with numerical values only, a modification of
PCA can perform on datasets with both quantitative and qualitative vari-
ables, such as the FAERS dataset. This process is known as “mixed PCA,”
as the variables are both categorical and numerical. The PCA algorithm is
also only performed on the training dataset, since that dataset fits the model.
The unimportant variables identified from PCA are then removed from the
corresponding testing dataset.

2.3.1 Dimension Reduction of Hazardous Events Dataset

To identify the most informative variables for creating the model, PCA must
determine the number of principle components. PCA generates the propor-
tion of variance that the components explain with respect to the number of
principle components that will be used. When running PCA on the training
dataset used to fit the hazardous events model, the proportion of variance
that 12 principal components would explain was 76.90%. When determining
the number of principle components used, a standard has at least 70% of
the variance explained. Since the dataset only has 12 variables, at most 12
principal components are possible.

The PCA algorithm also generates eigenvalues associated with the num-
ber of principal components used. Eigenvalues are described as “variances
of the principal components” and principal components should always have
eigenvalues above 1.00 (Pang-Ning Tan et al., 2017). The eigenvalue corre-
sponding with 12 principle components was 4.01, showing that twelve prin-
cipal components are su�cient; the eigenvalue is above 1.00.

PCA then produces a correlation matrix with squared correlation coe�-
cients associated with variable and number of principal components. Gen-
erally, variables selected should have a squared loading value (SLV) above
a certain threshold, to ensure that the variables chosen are the most useful
when creating the model. The SLV chosen in this analysis is greater than or
equal to

Below is the matrix with the chosen variables highlighted in yellow and
the removed variables shown in red.
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Training Data - Outcome
Number of observations 40000
Number of variables: 12

Number of numerical variables: 2
Number of categorial variables: 10

Squared Loadings:
dim 1 dim 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim 11 dim 12

caseversion 0.24 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
age 0.00 0.03 0.01 0.01 0.02 0.02 0.03 0.02 0.03 0.02 0.00 0.00
role cod 0.13 0.02 0.01 0.01 0.09 0.02 0.01 0.01 0.00 0.01 0.00 0.00
drugname 0.96 0.96 0.97 0.94 0.95 0.96 0.96 0.96 0.97 0.98 1.00 0.99
prod ai 0.94 0.95 0.96 0.91 0.93 0.93 0.93 0.94 0.94 0.97 1.00 0.98
route 0.73 0.41 0.21 0.50 0.20 0.09 0.04 0.11 0.04 0.03 0.00 0.02
dose amt 0.50 0.72 0.84 0.58 0.73 0.84 0.87 0.78 0.69 0.85 0.99 0.93
dose freq 0.76 0.35 0.20 0.33 0.10 0.07 0.05 0.01 0.04 0.02 0.00 0.01
mfr sndr 0.31 0.65 0.81 0.40 0.62 0.66 0.69 0.78 0.80 0.53 0.03 0.54
sex 0.02 0.00 0.00 0.02 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00
occur country 0.56 0.05 0.03 0.24 0.18 0.03 0.03 0.05 0.04 0.03 0.01 0.01
pt 0.39 0.42 0.52 0.38 0.37 0.44 0.46 0.39 0.47 0.58 0.97 0.53

The eight variables used to fit the model to predict hazardous events
related to prescription drugs are as follows:

i. drugname - name of medicinal product

ii. prod ai - product active ingredient

iii. route - route of drug administration (i.e. oral, intravenous, etc.)

iv. dose amt - amount of dosage in milligrams

v. dose freq - frequency of dosage amount (i.e. daily, weekly, etc).

vi. mfr sndr - name of drug manufacturer sending report

vii. occr country - country where event occurred

viii. pt - “preferred term” medical terminology describing the reaction

The response variable is coded as “outc cod” and is the code for a hazardous
event resulting from prescription drug usage. It can take the seven categorical
values described below:

i. CA - Congenital Anomaly

ii. DE - Death

iii. DS - Disability

iv. HO - Hospitalization (Initial or Prolonged)

v. LT - Life-Threatening
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vi. OT - Other Serious Medical Event

vii. RI - Required Intervention to Prevent Permanent Impairment

2.3.2 Dimension Reduction of Reaction Dataset

The same process to determine the number of principal components and in-
formative variables must be repeated for the training dataset involving pre-
dicting harmful reactions with respect to prescription drug usage. The pro-
portion of variance explained by 12 principal components is 89.23%, which is
above 70%, which means these 12 principal components are acceptable. The
eigenvalue relating to 12 principal components is 3.53, which is above 1.00.
This also reinforces the decision to use 12 principal components to determine
the informative variables to fit the model. There are only 12 variables cur-
rently in the pre-dimension reduction training dataset and one should not
use more than the number of variables for the principal components. The
SLV chosen in this analysis is again, greater than or equal to

Below is the matrix with the chosen variables highlighted in yellow and
the removed variables shown in red.

Training Data - Reaction
Number of observations 40000
Number of variables: 12

Number of numerical variables: 2
Number of categorial variables: 10

Squared Loadings:
dim 1 dim 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dim 11 dim 12

caseversion 0.23 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.02
age 0.00 0.05 0.02 0.00 0.01 0.02 0.03 0.00 0.00 0.17 0.00 0.01
role cod 0.12 0.03 0.01 0.00 0.06 0.03 0.02 0.00 0.00 0.02 0.10 0.02
out cod 0.03 0.01 0.00 0.00 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.00
drugname 0.97 0.96 0.96 0.99 0.96 0.97 0.98 0.99 0.99 0.94 0.96 0.96
prod ai 0.95 0.94 0.94 0.99 0.93 0.94 0.96 0.98 0.98 0.89 0.92 0.93
route 0.74 0.63 0.56 0.08 0.15 0.17 0.05 0.22 0.04 0.28 0.11 0.24
dose amt 0.50 0.61 0.69 0.96 0.73 0.83 0.87 0.65 0.89 0.56 0.57 0.61
dose freq 0.78 0.56 0.33 0.03 0.12 0.13 0.02 0.03 0.01 0.12 0.24 0.30
mfr sndr 0.29 0.46 0.45 0.93 0.61 0.65 0.84 0.89 0.87 0.43 0.51 0.35
sex 0.02 0.01 0.00 0.00 0.04 0.02 0.01 0.00 0.00 0.02 0.03 0.00
occur country 0.55 0.07 0.08 0.02 0.31 0.07 0.04 0.03 0.01 0.20 0.13 0.10

The seven variables used to fit the model to predict harmful reactions
related to prescription drugs. They are as follows:

i. drugname - name of medicinal product

ii. prod ai - product active ingredient
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iii. route - route of drug administration (i.e. oral, intravenous, etc.)

iv. dose amt - amount of dosage in milligrams

v. dose freq - frequency of dosage amount (i.e. daily, weekly, etc).

vi. mfr sndr - name of drug manufacturer sending report

vii. occr country - country where event occurred

The response variable is coded as “pt” and is the “preferred term” med-
ical terminology describing the reaction. As mentioned earlier, in the initial
dataset, this “pt” variable could take around 2,000 di↵erent values. To im-
prove the accuracy of the model, it used only the most frequently occurring
15 reactions. These di↵erent reactions, coded numerically in alphabetical
order, are described below:

i. Anemia (1) - condition in which the blood does not have enough healthy red
blood cells or hemoglobin

ii. Asthenia (2) - unusual weakness or lack of energy

iii. Cough (3) - the act of expelling air from lungs suddenly

iv. Diarrhea (4) - condition in which loose / liquid stools are passed frequently

v. Dyspnea (5) - labored breathing

vi. Fall (6) - the act of collapsing or losing one’s balance

vii. Fatigue (7) - extreme tiredness

viii. Headache (8) - continuous head pain

ix. Kidney Injury (9)- sudden episode of kidney failure or kidney damage

x. Malaise (10) - feeling of illness or uneasiness

xi. Nausea (11) - an inclination to vomit

xii. Pain (12) - physical su↵ering caused by injury or illness

xiii. Pneumonia (13) - condition in which lungs are inflamed due to an infection

xiv. Pyrexia (14) - also known as fever, increased body temperature

xv. Vomiting (15) - the act of expelling matter from the stomach through the
mouth
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2.4 Visualization

After determining the most informative and useful variables to create the pre-
dictive models, it is helpful to visually analyze the dataset. Visual aids can
help to understand the dataset’s distribution and any existing relationships
in the data. A certain package in R, known as ggplot2, is widely used and
creates elegant and complex plots that aid in summarizing data. The graph-
ing package is based on Leland Wilkinson’s “Grammar of Graphics” which
is a “method of independently specifying plot building blocks and combining
them to create just about any kind of graphical display” (Pang-Ning Tan et
al., 2017). Ggplot2 is an e↵ective way to produce colorful, informative, and
quality visual aids.

A bar-chart displays the frequency counts of di↵erent categories of haz-
ardous events in the respective training dataset. Many hazardous events
resulted in other serious impairments that probably could not be placed into
any of the other categories. This may be why this category has the highest
frequency of records, while the other categories are more specific. In compar-
ison, the hazardous events of congenital anomaly and required intervention
have very low occurrences while death, disability, and life-threatening im-
pairment all havesimilar counts ranging from around 1,000 to 3000 reported
occurrences.
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Another bar-chart displays the frequency counts of di↵erent categories
of reactions in the respective training dataset. These occurrences are more
evenly distributed than the di↵erent outcomes shown above. The most com-
mon reaction is diarrhea with around 3,600 occurrences. Diarrhea is a very
common side e↵ect. In fact, almost all prescription drugs may have diarrhea
as a drug-induced reaction (MedlinePlus, 2019). This may be why it is the
most commonly reported reaction in this FAERS dataset.The next most fre-
quent reactions appear to be dyspnea, pneumonia, and fatigue, all having
around 3,000 occurrences. The least common reactions are asthenia, cough,
headache, and general pain, all having around 1,700 occurrences.

It is interesting that these occurrences of these 15 di↵erent reactions are
somewhat evenly distributed, most ranging from around 1,700 to 3,600 oc-
currences, a much closer spread than seen in the frequency distribution of
outcomes which range from around 10 to 18,000 occurrences. A possible ex-
planation could hypothesize that these reactions are considered more similar
to each other than the outcomes codes. For example, nausea and vomiting
are quite similar along with dyspnea and fatigue, which are often confused
with each other.
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Chapter 3

Multiclass Classification

Various classification algorithms need to be utilized to train the predictive
multiclass model. The models used in this project to predict hazardous events
and reactions observed in patients as a response to prescription drug usage in-
clude: Multinomial Logistic Regression, Näıve Bayesian, and Support Vector
Machine algorithms. Chapter 1 describes these algorithms. The models all
predict the given response variable at a varying level of accurateness. This
is due to the underlying assumptions and nature of the algorithms. This
chapter compares the models with respect to three measures – prediction ac-
curacy, receiving operator characteristics (ROC) curve, and area under the
curve (AUC) value, which Chapter 1 also defines.

3.1 Classification of Hazardous Events

The Näıve Bayesian, Support Vector Machine, and Multinomial Logistic Re-
gression algorithms each create di↵erent classification models to predict the
hazardous event, the response variable. They each use using the following
predictor variables: drug name, drug active ingredient, route of drug admin-
istration, dosage amount, dosage frequency, drug manufacturer, occurrence
country, and patient reaction. These di↵erent classification models can be
evaluated and compared using prediction accuracy, their respective ROC
curve, and corresponding AUC value.

Pictured below is the confusion matrix for the Näıve Bayesian model,
which predicts patient outcome codes. The display highlights the correctly
classified records in yellow.
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To determine the prediction accuracy of the Näıve Bayesian model, simply
perform this calculation:

Accuracy =
7 + 532 + 109 + 3168 + 295 + 3750 + 0

9596
⇤ 100 = 81.92% (3.1)

This prediction accuracy means the Näıve Bayesian model predicts pa-
tient outcomes correctly 81.92% of the time. This percentage is above 80%,
showing that this model is useful to predict the given response variable.

Pictured below is the confusion matrix for the Support Vector Machine
model that predicts patient outcome codes. The display highlights correctly
classified records in yellow.

To determine the prediction accuracy of the SVM model, calculate:

Accuracy =
0 + 701 + 0 + 3049 + 1 + 4317 + 0

9596
⇤ 100 = 84.07% (3.2)

This prediction accuracy means the SVM model predicts patient out-
comes correctly 84.07% of the time. This percentage is above 80%, also
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showing this model is useful to predict the given response variable. However,
the SVM prediction accuracy is higher than that of the Näıve Bayesian pre-
diction accuracy, indicating SVM as a more accurate and useful classification
model than Näıve Bayesian.

Pictured below is the confusion matrix for the Multinomial Regression
model that predicts patient outcome codes. It highlights correctly classified
records yellow.

To determine the prediction accuracy of the Multinomial Regression model,
calculate:

Accuracy =
1 + 313 + 96 + 2073 + 235 + 4033 + 0

9596
⇤ 100 = 70.35% (3.3)

This prediction accuracy means that the Multinomial Regression model
predicts patient outcomes correctly 70.35% of the time. This percentage is
below 80%, which says this model is not particularly useful to predict the
given response variable. Additionally, the Multinomial Regression predic-
tion accuracy is lower than that of the Näıve Bayesian and SVM prediction
accuracy, making Multinomial Regression the least accurate and useful clas-
sification model for predicting patient outcomes discussed so far.

Shown below are the ROC curves associated with the models predicting
patient outcomes in the following order: Support Vector Machine, Näıve
Bayesian, and Multinomial Regression.
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Figure 3: Left to right: Best to worst performance of multiclass classification.

The ROC curve produced by the Support Vector Machine model is well
above the diagonal line in the center of the graph. Therefore, this classifier
is not randomly predicting all patient outcomes. The AUC value associated
with this model is 0.9015, which is much closer to 1.00 than 0.50. This means
that the model is rarely performing random predictions. The model has a
high TPR and a low FPR, resulting in the high AUC value and an ROC
curve close to the top left corner of the graph.

The ROC curve produced by the Näıve Bayesian model is above the
diagonal line in the center of the graph, similar to the SVM ROC curve.
The AUC value associated with this model is 0.7332, which is closer to 1.00
than 0.50, meaning that the model performs accurate classifications more
than inaccurate classifications. This AUC value is lower than the AUC value
associated with the Support Vector Machine, making the latter model a more
accurate classification model for predicting patient outcomes.

The ROC curve produced by the Multinomial Regression model is slightly
above the diagonal line in the center of the graph. The AUC value associated
with this model is 0.6045, which is closer to 0.50 than 1.00. This means that
more often than not, the model is performing random predictions rather than
using the predictor variables to accurately predict the patient’s outcome.

Overall, Support Vector Machine’s AUC value is the closest out of the
three model’s AUC values to 1.00, making it the most accurate model when
predicting patient outcomes. Additionally, the peak of the SVM’s ROC curve
is closest to the top left-hand corner of the graph out of the three ROC curves.

A table summarizes the prediction accuracy and AUC values of the vari-
ous classification models that predicts patient outcomes. The algorithms are
listed in the order of highest performing model to lowest performing model.
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Algorithm Prediction Accuracy AUC Value
Support Vector Machine 84.08% 0.9015
Näıve Bayesian 81.92% 0.7332
Multinomial Regression 70.35% 0.6045

3.2 Classification of Harmful Reactions

The Näıve Bayesian, Support Vector Machine, and Multinomial Logistic Re-
gression algorithms are all useful to create di↵erent classification models
to predict the harmful reaction (the response variable) using the follow-
ing predictor variables – drug name, drug active ingredient, route of drug
administration, dosage amount, dosage frequency, drug manufacturer, and
occurrence country. These di↵erent classification models can be evaluated
and compared in terms of their prediction accuracies, their respective ROC
curves, and their corresponding AUC values.

After discussing the classification models estimating patient outcomes,
one can now analyze the confusion matrices produced by testing the models
predicting patient reactions. Pictured below is the confusion matrix for the
Näıve Bayesian model that predicts patient reactions. The display highlights
correctly classified records in yellow.

Predicted
True Values 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 297 15 10 14 12 13 11 9 12 0 14 11 10 8 13
2 8 324 10 7 12 14 0 19 11 7 19 17 8 10 12
3 10 5 282 12 8 10 12 9 13 11 4 12 0 7 10
4 5 0 10 321 11 4 10 12 8 12 6 0 8 12 9
5 9 27 22 15 597 45 28 18 19 14 16 17 13 42 12
6 10 19 22 15 17 518 18 15 20 20 17 34 19 12 10
7 8 17 12 8 11 9 376 9 10 17 13 4 7 0 10
8 11 6 0 18 10 21 17 562 20 13 9 21 11 19 12
9 2 0 8 19 12 11 20 10 294 8 12 6 0 10 19
10 5 11 14 3 19 0 22 7 10 393 3 9 12 0 4
11 8 13 9 12 11 16 6 15 11 17 517 10 19 7 15
12 7 4 0 10 16 12 8 15 0 10 9 302 11 12 7
13 0 9 10 12 5 17 34 11 21 29 18 16 539 16 0
14 18 22 17 0 8 11 18 23 26 18 4 12 15 423 14
15 7 19 20 11 15 16 12 15 10 19 18 12 9 13 342

To determine the prediction accuracy of the Näıve Bayesian model,
calculate:

Accuracy =
297 + 324 + 282 + 321 + 597 + 518 + 376 + 562 + 294 + 393 + 517 + 302 + 539 + 423 + 342

8656
⇤ 100 = 70.32%

(3.4)
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The prediction accuracy shown above means that the Näıve Bayesian
model predicts patient reactions correctly 70.32% of the time. This percent-
age is below 80%, making this model not particularly useful in predicting
the given response variable. This measure will be compared with the other
models’ prediction accuracy further below.

Pictured below is the confusion matrix for the Multinomial Regression
model predicting patient reactions. The correctly classified records are high-
lighted in yellow.

Predicted
True Values 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 305 14 6 9 10 15 22 2 5 5 6 11 12 12 15
2 9 317 11 10 8 6 19 7 12 11 14 11 15 6 12
3 23 10 184 14 15 7 24 17 22 8 18 16 14 10 13
4 19 11 7 265 12 12 11 6 12 17 10 15 12 11 8
5 12 7 10 7 771 13 10 10 10 8 7 11 7 12 11
6 6 8 13 1 2 625 12 11 15 12 10 12 8 9 13
7 6 12 15 19 8 10 333 16 15 18 13 8 9 13 8
8 18 9 12 16 15 6 10 592 4 6 7 8 17 16 13
9 9 11 16 11 8 10 21 14 280 16 5 10 9 3 8
10 18 16 13 6 11 5 15 7 5 340 13 19 10 9 15
11 8 14 1 3 13 9 7 16 10 18 553 10 3 1 10
12 17 13 21 27 11 13 9 7 16 10 18 216 12 8 17
13 12 8 7 12 9 11 4 10 16 13 8 15 594 5 9
14 12 8 7 16 12 3 13 5 6 3 16 13 11 507 10
15 11 10 10 6 16 14 10 15 12 12 14 7 3 9 388

To calculate the prediction accuracy of the Multinomial Regression model,
find:

Accuracy =
305 + 317 + 184 + 265 + 771 + 625 + 333 + 592 + 280 + 340 + 553 + 216 + 594 + 507 + 388

8656
⇤ 100 = 72.43%

(3.5)

This prediction accuracy means the Multinomial Regression model pre-
dicts patient reactions correctly 72.43% of the time. This percentage is below
80%, which indicates that model is not particularly useful in predicting the
given response variable. However, this prediction accuracy is higher than the
prediction accuracy of the Näıve Bayesian model, which shows the Multino-
mial Regression model more useful in predicting various patient reactions.
This is very interesting, as the Multinomial Regression model was the least
accurate algorithm in classifying di↵erent hazardous patient outcomes. When
predicting harmful patient reactions, it is the most accurate.
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The confusion matrix for the Support Vector Machine model to predict
patient reactions highlights correctly classified in yellow.

Predicted
True Values 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 232 25 18 24 22 6 13 15 6 22 11 5 3 29 18
2 22 256 24 15 2 13 29 28 12 12 13 17 17 12
3 13 10 197 21 3 18 10 12 27 9 27 30 9 4 15
4 27 15 28 221 7 12 4 3 9 30 16 16 1 29 10
5 19 26 35 42 645 21 17 2 26 20 1 15 8 14 5
6 12 31 18 31 5 503 18 28 32 33 6 11 12 11 25
7 15 29 11 17 15 16 294 4 2 33 5 17 13 28 12
8 16 30 24 30 20 12 13 537 6 15 24 7 3 5 8
9 23 23 10 19 10 10 19 4 228 8 7 9 16 22 23
10 14 10 17 29 23 14 8 9 23 293 21 14 11 19 7
11 20 16 9 16 7 15 18 19 21 30 470 6 17 12 10
12 13 18 12 15 9 13 6 27 12 27 4 219 21 15 12
13 16 18 30 27 14 12 26 11 9 1 6 15 544 16 8
14 18 12 13 16 8 6 10 11 29 17 11 28 9 423 19
15 30 9 29 19 11 9 10 28 18 7 9 14 18 10 317

To determine the prediction accuracy of the Support Vector model,
calculate:

Accuracy =
232 + 256 + 197 + 221 + 645 + 503 + 294 + 537 + 228 + 293 + 470 + 219 + 544 + 423 + 317

8656
⇤ 100 = 62.14%

(3.6)

This prediction accuracy means the Support Vector model predicts pa-
tient reactions correctly 62.14% of the time. This percentage is below 80%,
which indicates this model not particularly useful in predicting the given
response variable. The Support Vector machine models has the lowest pre-
diction accuracy out of the three models discussed. Therefore, it is the least
useful model in predicting patient reactions.

Shown below are the ROC curves and corresponding AUC values asso-
ciated with the models predicting patient reactions in the following order:
Multinomial Regression, Näıve Bayesian, and Support Vector Machine.
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Figure 4: Left to right: Best to worst performance of multiclass classification.

The ROC curve produced by the Multinomial Regression model meets
the main diagonal for some values in the graph but eventually moves above
the diagonal. Therefore, this classifier sometimes randomly predicts patient
reactions. The AUC value associated with this model is 0.6818, which is
closer to 0.50 than 1.00. This means that more often that not, the model
performs random predictions rather than accurately predicting the patient’s
outcome with combinations of the predictor variables.

The ROC curve produced by the Näıve Bayesian model is mostly slightly
above the main diagonal of the graph. However it does dip below the diagonal
at one point in the graph. When a model’s ROC curve is below this diagonal,
it means the model makes inaccurate prediction more often that accurate
ones. This is not a desirable performance. The AUC value associated with
this model is 0.6015, which is closer to 0.50 than to 1.00. This means the
model performs a majority of random predictions. The ROC curve is not
close to the top left corner of the graph. This model is not useful model in
classifying patient reactions and would hopefully not be utilized in a real-
world setting. This AUC value is lower than the AUC value associated with
the Multinomial Regression model, which indicates the former model a more
accurate classification model for predicting patient reactions.

The ROC curve produced by the Support Vector Machine model exactly
meets the diagonal line in the center of the graph. Therefore, this classifier
is randomly predicting all patient reactions. The AUC value associated with
this model is exactly 0.5000, again demonstrating the randomness of the
prediction model. Support Vector Machine’s AUC value is the lowest out
of the three model’s AUC values, making it the least accurate model when
predicting patient reactions. This classification model performs no di↵erently
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than an individual who randomly selects a di↵erent patient reaction as the
prediction.

Overall, Multinomial Logistic Regression’s AUC value is the closest out
of the three model’s AUC values to 1.00, making it the most accurate model
when predicting patient reactions. Additionally, the peak of the Multinomial
Regression ROC curve is closest to the top left-hand corner of the graph out
of the three ROC curves.

A table summarizes the prediction accuracy and AUC values of the vari-
ous classification models that predicts patient reactions. The algorithms are
listed in the order of highest performing model to lowest performing model.

Algorithm Prediction Accuracy AUC Value
Multinomial Regression 72.43% 0.6818
Näıve Bayesian 70.32% 0.6015
Support Vector Machine 62.14% 0.5000
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Chapter 4

Discussion and Conclusion

4.1 Overview of Results for Hazardous Events

After analyzing the results of this statistical analysis, multiple conclusions
can be drawn. The best model for predicting hazardous patient outcomes
is clearly the Support Vector Machine model. Its prediction accuracy, ROC
curve, and AUC value outperform the other two models. The SVM algorithm
may produce a more useful model, as this particular algorithm works well
with high-dimensional and complex data such as the FAERS dataset used in
the project (Pang-Ning Tan et al., 2017).

When analyzing specific risks of prescribing certain drugs to patients,
medical professionals could run this classification model. This way, the med-
ical sta↵ could analyze which specific dangerous outcome would occur when
giving a patient a certain prescription drug. Many medical sta↵ could also
avoid malpractice lawsuits from prescribing patients with a potentially very
dangerous drug treatment. However, if the model predicted that the patient
would su↵er a minor hospitalization as a result of taking the drug, the med-
ical team could weigh the benefits and disadvantages of inducing a certain
patient with that prescription, instead of making a blind decision.

4.2 Overview of Results for Reactions

When comparing the classification models that predict patient reactions, it
is clear that the most useful model for classifying harmful reactions is the
Multinomial Regression model. Its prediction accuracy, ROC curve, and
AUC value suggest that it performs better that the other two models tested.
The Multinomial Regression algorithm is considered an attractive analysis
because it does not assume normality or linearity of the dataset, meaning
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that these assumptions do not have to be true to create a high-performing,
accurate model.

A classification model that accurately predicts the various reactions as-
sociated with a certain drug given particular input variables could be very
useful to the medical professional as well as consumers. If a patient feels un-
sure about experiencing a side-e↵ect to a specific drug, he or she can input
certain information into the model. As a result, the patient could expect a
likely reaction to the prescription drug, based on his or her inputs. Likewise,
a medical professional could enter a patient’s drug, dosage, and demographic
information and become knowledgable about certain reactions an individual
may have to a medication. The medical sta↵ then could warn the individual
in advance about likely reactions, such as a headache or fever, that the pa-
tient may experience. Comprehensively, the classification models could prove
very useful in a real-word setting.

4.3 Conclusion

Overall, a variety of statistical classification models can be applied to re-
ported medical data and utilized to predict hazardous events and harmful
reactions with respect to patient usage of prescription drugs. This project
aims to identify the most accurate predictive model. The model uses drug
name, drug active ingredient, route of drug administration, dosage amount,
dosage frequency, drug manufacturer, occurrence country, and patient reac-
tion to classify hazardous events. To predict harmful reactions, the model
utilizes the same predictor variables listed above with the exception of patient
reaction, as that is the designated response variable.

Specifically, the Support Vector Machine model is the most useful in clas-
sifying possible serious patient outcomes while the Multinomial Regression
model is the most accurate in predicting a variety of unfavorable patient re-
actions. The usage of these models could ease consumer anxiety about dan-
gerous and abnormal side-e↵ects associated with medicinal drugs. Medical
sta↵ could also become more knowledgable about these particular side-e↵ect
and events and pass on this information more confidently to patients. The
use of these statistical models in the medical field could prove very helpful
to both medical professionals and public consumers.
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