Hey, you mathematicians! Isn’t it about time you stopped sulking because the longest words come from chemistry (Word Ways, February 1971)? You can show those chemists a thing or 2.71828, if you want to.

For example, Webster’s Third Unabridged, under POLYACRYLONITRILE, states that the polymer is soluble in DIMETHYLFORMAMIDE. Yet the correct name of this solvent contains no hyphen, as shown in the separate entry for it.

And how about the structural formula shown in Webster’s on page 1695 for the chemical PHENANTHRENE? Anyone knows there should be an extra line in the left-hand hexagon to agree with the one on the right-hand side.

Not to mention SPANDEX. Webster’s claims it is an anagram of EXPAND. We need no dictionary to show one can’t rearrange EXPAND to SPANDEX. Further, you chemists, what is a polymer molecule composed of “85% of a segmented polyurethane” as given under the definition for SPANDEX? A polymer molecule is a polymer molecule. If it has segmented polyurethane, it is 100% segmented polyurethane; if it hasn’t, it isn’t.

Chemists? Phooey!

You mathematicians know, don’t you, that there are seven, and only seven, INDETERMINATE FORMS? Just because Webster’s shows eight, you aren’t phased. (Phased? Look that up, and cry, you English teachers.) Just a slight goof by Webster’s, in putting a comma between 0 and ∞, instead of a raised dot.
Of course, there is a minor mix-up in Webster's regarding logarithms. I recently interviewed Mr. Webster to clarify the situation.

RGB: Tell me about logarithms, Mr. Webster. They seem to be rather confusing.

Mr. W: A LOGARITHM is the power to which a number must be raised to produce a given number. An abbreviation or noun for LOGARITHM is LOG. Naturally, LOG is also other things, including a chunk of wood.

RGB: I've seen the reduplication LOG-LOG. What's that?

Mr. W: A noun or adjective pertaining to the logarithm of a logarithm. For example, a LOG-LOG SCALE is one on which distances are proportional to LOG-LOGS.

RGB: Then I could plot the data on LOG-LOG PAPER.

Mr. W: No sirree. On LOG-LOG PAPER the scales are LOG, not LOG-LOG. That's one less order of magnitude in logarithms. Would'n't it have helped if you had defined LOGLOG as the logarithm of a logarithm, and LOG-LOG as log vs. log?

RGB: There is no such word as WOULDN'T. Would you care to use COULDN'T or SHOULDN'T?

Mr. W: Sorry, I haven't memorized your book. But my question? The answer is, not really. Consider LOGARITHMIC SCALE, whereon distances are proportional to the logarithms. This is clearly not the same as LOG-LOG SCALE.

RGB: I see. And a short version for the term is LOG SCALE.

Mr. W: Wrong again. A LOG SCALE measures chunks of wood. You haven't been paying attention.

RGB: Sorry, sir. How about LOG PAPER?

Mr. W: There is no such combination. But there is the term LOGARITHMIC PAPER.

RGB: Then I could plot log vs. log on that paper.

Mr. W: Not necessarily. There are two kinds of paper under the same name. One has a logarithmic scale on only one axis; the other on both axes. You'd need the right kind.

RGB: That could be very confusing.

Mr. W: No indeedy. I do give SEMILOGARITHMIC, also SEMILOG, for the paper you don't want.

RGB: Oh, yes. It's also called RATIO SCALE, I believe.

Mr. W: There is no such combination. But there is RATIO CHART.

RGB: I am really stupid.

Mr. W: You said it, I didn't. Have I clarified everything about logarithms?

RGB: Uh-buh. I believe so. Thank you, Mr. Webster.

So, chemists, eat your hearts out. You may have the longest words. But -- the mathematicians have the most confusing!