A FIVE-YEAR TOPICAL INDEX

The following index has been designed to help the reader easily locate specific examples of wordplay appearing in the first five volumes of Word Ways. It was decided at the outset that an alphabetical index would not do; the field of recreational linguistics is so new that terminology is far from standardized. Nearly everyone knows what an anagram or a palindrome is; fewer people can identify an isomorph or a pangram; almost no one can define a polygram or a switch word. Instead, a topical index has been designed; a taxonomy of wordplay has been set up so that the casual reader can rather quickly move to the relevant section of the index and search through a small collection of closely-related descriptors to find what he wants.

No claim is made that this taxonomy is definitive; it is quite likely that no room has been included for important (but as yet unsuspected) topics in recreational linguistics. Nevertheless, the person interested in understanding how different kinds of wordplay relate to each other should find novel connections and insights.

The index has been made as self-explanatory as possible. The descriptors are intended to be suggestive rather than definitive; however, sample words with the specified property are often given in parenthesis following the descriptor. All references are given in volume-page form; thus, 5-23 refers to the 23rd page in Volume 5 (in the February 1972 issue). Note that relevant material may continue on for several pages.

Readers may be helped by an overview of the way in which the index has been put together. Broadly speaking, words can be classified in three different ways -- by sight, by sound, and by meaning. The emphasis in Word Ways during the first five years has been on words as collections of letters (sight); some attention has been paid to their meaning; relatively little consideration has been given to words as collections of sounds. The imbalance between sight and sound may, perhaps, reflect the fact, well-known to psychologists, that the brain receives much more information through the eye than the ear. Academic linguistic studies place much greater emphasis on meaning than either sight or sound; on the other hand, word puzzles and games (from Carroll, Dudeney and Bomabugh onward) stress sight and sound. Word-puzzles, however, focus on the individual word oddity; one of the major objectives of recreational linguistics has been to integrate these scattered results, to understand how different word properties relate to each other, and to discover (as a result of this integration) new logological world to conquer. The first book on recreational linguistics to attempt a unified approach, Dmitri Borgmann's Language on Vacation, attempts to provide some insights, taken at word play in Word Ways and other parts: Language and Letter and Word Puzzles and Games, which include personal name errors. This is an elaboration of that.

How can words be classified?

1) some letters the same
2) next word
3) further
4) final

This suggests a 2-by-2-by-2 classification, which would be easy to produce a new indexing scheme.

1) all letters
2) some letters
3) group
4) alpha
5) word

In general, the final index:

In ciphers, in substitution ciphers, in example, all transformations given into groups be transposed morphs (h)
on Vacation, was published in 1965. This index builds on Borgmann’s insights, taking advantage of experience gained during five years of Word Ways to attempt a more elaborate and suggestive classification of wordplay.

Although the sight-sound-meaning classification appears to be a natural and useful one, it does not easily embrace all of the articles in Word Ways. Therefore, the index has been divided into two major parts: Language Research (using the sight-sound-meaning classification) and Entertainments (special formats, such as fiction, poetry, puzzles and games; special vocabularies, such as place names, personal names and lists of related words; book reviews and dictionary errors). The remainder of this introductory article will be devoted to an elaboration of the sight-sound-meaning classification.

How can words be classified by sight? At least four dimensions can be distinguished:

1) some properties of words focus upon all the letters in a word whereas other properties focus upon only part of a word -- the letters in the remainder are irrelevant
2) next, one can distinguish between properties involving a single word and properties which can be exhibited only for a group of words (relations of different words to each other)
3) furthermore, one can draw a dichotomy between properties of words in which the alphabetic arrangement of letters plays no role, and properties of words in which this role is essential
4) finally, consider a change of the basic unit: sentences as collections of words instead of words as collections of letters

This suggests that word appearance properties should be displayed in a 2-by-2-by-2-by-2 table; however, many of the boxes in this table would be empty. Accordingly, various boxes have been combined to produce a nested structure:

1) all letters used (single words, alphabet-independent, letter units)
2) some letters used (single words, alphabet-independent, letter units)
3) groups of words (alphabet-independent, letter units)
4) alphabet-dependent (letter units)
5) word units

In general, each line exhibits a successively coarser classification; the final line includes eight boxes of the original table.

In cryptography, two basic cipher systems are used -- permutation ciphers, in which the letters of a message are scrambled, and substitution ciphers, in which the letters of a message are replaced (for example, all A's with C's, all B's with M's, etc.). These two transformations give the logologist two different methods for classifying words into groups according to properties based on all letters: two words can be transpositions (have the same letters), or two words can be isomorphs (have the same pattern). Isomorphic groups of particular in-
terest include palindromes, tautonyms and switch words. If these
two transformations are combined, words can be classified in yet
another way. Two words are christened transmorphs (in earlier
Word Ways issues, anagrammatic isomorphs) if they have the same
number of letters of various kinds; for example, two seven-letter
words are transmorphs if they consist of two different letters used
twice and three different letters used once. Transmorphic groups
of particular interest are isograms (each letter once), pair isograms
(each letter twice), polygrams (each letter at least twice), and pyra-
mid words (one letter once, one letter twice, etc.). The study of
long words is a limiting case of transmorphs in which one is inter-
ested not in the number of letters of each kind, but simply in the num-
ber of letters.

What can be said about properties involving some, but not all, of
the letters in a word? To begin with, there is a transitional situation
in which one is interested not in the pattern of all letters in a word,
but only those letters at certain fixed positions in the word -- heads
'n tails words, words with doubled beginnings and endings, words
with specified letters at the beginning and end. This leads to a con-
sideration of various letters in a word without regard to their loca-
tion in the word -- words containing several rare letters, words con-
taining the five vowels once each, words containing multiple appear-
ces of the same letter. If all letters are present in a word, it is
called a pangram. Since no such words exist, a pangram is more
often defined as a set of words collectively containing all the letters,
usually in a literary format. (However, if no extra letters are pres-
ent in a pangram, it is more logically classified as an isomorph of
26 letters). If single letters of various sorts, why not groups of let-
ters without regard to location -- bigrams, trigrams, repeated bigram
s or trigrams, multigrams such as internal palindromes? The groups
of letters need not be contiguous -- consider, for example, alternating
monotones. There is no need to restrict oneself to a study of letters;
other symbols, such as hyphens, accents, internal capitals and the
like can be catalogued. Finally, one can consider words having the
absence (instead of the presence) of certain letters. Since the ab-
sence of any letter or group of letters in a single word is hardly note-
worthy, most lipograms consist of groups of words in a literary form.

One of the most interesting, and difficult, fields of recreational
linguistics is the study of the relationship of groups of words to each
other. Many of the single-word problems outlined in the preceding
two paragraphs can be solved (at least in principle) by a computer
search through a dictionary tape, but it is a much more lengthy job
for a computer to assemble a group of words in which each word de-
pends upon the choice of all others. Perhaps the simplest example
of a word group is a pair of words differing only in one letter in the
same position (as value-value), or differing only in one letter without
regard to position (as sense-sheal). Both ideas can be readily gen-
eralized to larger groups. Sequences of words in which each succes-
sive pair differs in only one letter in the same position are word lad-
ders, and onalosis and garble groups are nothing but densely-packed
word groups in which a maximum number of ladder-first-steps (or
full ladders) are possible. Similarly, if transposition is allowed so
that one can split or break a word at a word boundary, a large num-
er of different groups are possible: for example, (one letter
ly one letter appearance) - groups of words of the same size (such as Crash), or
other groups of the (five-letter) (forming means). Other groups
of word steps are possible: for example, with the single letter
broken into a sequence in such a way that the sequence of letters trans-
still possible, to achieve a less overlap, is the starting point of the
construction that the overlapping word steps can be transmorphs
square, n-grams, and the like. Similarly, words that have been en-
crypted (words with different rules for the order of the letters,
Broadly speaking, as transposition groups, these might be
the various rules for encrypting.

Finally, one of the most interesting, and difficult, fields of recrea-
tional linguistics is the study of the relationship of groups of words to each
other. Many of the single-word problems outlined in the preceding
two paragraphs can be solved (at least in principle) by a computer
search through a dictionary tape, but it is a much more lengthy job
for a computer to assemble a group of words in which each word de-
pends upon the choice of all others. Perhaps the simplest example
of a word group is a pair of words differing only in one letter in the
same position (as value-value), or differing only in one letter without
regard to position (as sense-sheal). Both ideas can be readily gen-
eralized to larger groups. Sequences of words in which each succes-
sive pair differs in only one letter in the same position are word lad-
ders, and onalosis and garble groups are nothing but densely-packed
word groups in which a maximum number of ladder-first-steps (or
full ladders) are possible. Similarly, if transposition is allowed so
that one can split or break a word at a word boundary, a large num-
er of different groups are possible: for example, (one letter
ly one letter appearance) - groups of words of the same size (such as Crash), or
other groups of the (five-letter) (forming means). Other groups
of word steps are possible: for example, with the single letter
broken into a sequence in such a way that the sequence of letters trans-
still possible, to achieve a less overlap, is the starting point of the
construction that the overlapping word steps can be transmorphs
square, n-grams, and the like. Similarly, words that have been en-
crypted (words with different rules for the order of the letters,
Broadly speaking, as transposition groups, these might be
the various rules for encrypting.

Shifting can distinguish another order of the letters, but the
resulting arrangement is not a

If these ideas are translated into yet another form, one arrives at the same conclusion: in earlier n-letter words, the earlier used letters appear in exactly one letter in common, or groups in which each possible pair of letters appears in exactly n different words. In the limit, one can look for groups of words in which no pair of words has the same letter in the same position (forming the basis of a strategy for the game of Crash), or no pair of words has the same letters regardless of position (forming the basis of a strategy for the game of Jotto).

Other group structures are possible. One broad class (called word steps in the index) is based on a sequence of letters, all different or with repetition allowed, stretched out in a line or joined head-to-tail in a circle. The objective in all four cases is to form the sequence in such a way that an n-letter-wide "window" sliding along the sequence will always reveal a word (or, more generally, a group of letters transposable into a word). More relaxed restrictions are possible, too. Successive words derived from the sequence can have less overlap, down to the limiting case in which the tail of one word is the start of the next word (this places so little difficulty on the construction that usually additional additions are invoked, such as cycling the overlap letters through the alphabet). A second broad class (called group transpositions in the index) was originally synonymous with word squares, n-by-n squares of letters which must form words when read in the horizontal or vertical directions (or, more generally, must be transposable to words in the two directions). Word squares, however, have been extensively generalized -- word rectangles, higher dimensions (word cubes), additional restrictions (Latin squares), different rules for building new word groups out of old (pentomino puzzles). Broadly speaking, word squares and their relatives can be regarded as transpositions of groups of words into other groups of words under various rules.

Finally, it is possible to consider groups of words whose members do not all have the same number of letters. Hospitable words, for example, can be transformed into other words by the addition of a suitable letter in any position between letters; charitable words remain words if any letter is deleted. Successive beheadment or curtailing of a word to produce a new word leads to word groups with a triangular (or truncated triangular) structure. More generally, a charade breaks up a word into a group of shorter words, If a letter can be deleted anywhere in the word and the remaining letters transposed to form another word, a transdeletion has taken place; again, successive transdeletions lead to triangular groups of words. The transdeletion index of a word is the minimum number of letters that must be added to a word in order that a new transposed word be formed.

Shifting attention from word groups to alphabetic dependence, one can distinguish two classes of wordplay -- that dependent upon the rank of the letters in the alphabet, and that dependent upon the scores of the letters (A = 1, B = 2, etc.). The former is genuinely logological, but the latter has been criticized as recreational mathematics masquerading as wordplay. Obviously, it is difficult to draw a firm bound-
ary between these territories. One can look for words which have all their letters from the first half of the alphabet (or, indeed, any shorter segment). It is somewhat easier to look for words containing a group of alphabetically adjacent letters scattered through them, either in random or proper alphabetic order. Letter-scoring leads to a variety of quasi-mathematical exercises, such as numerical tautonyms, difference words, poker words, and centrally balanced beam words. (Other examples in Dmitri Borgmann's book are shift words and ACE words.)

There are only a few Word Ways examples illustrating the final aspect of the appearance of words: properties based on words as units instead of letters as units. This field of wordplay is so underdeveloped that it is unreasonable to impose a logical structure on it at this time. It seems fairly evident that one cannot classify by analogy with letters as units.

The classification of words according to sound is much less elaborate than that for words according to sight. Earlier, the basic units were letters; now, they are syllables or phonemes. No one seems to have considered using phonemes as surrogates for letters, and repeating the various studies outlined above -- phonetic palindromes, transposals, etc. One difficulty seems to be that the phonetic "alphabet" is rather large (there are many subtle variations in vowel sounds) and ill-defined (one sound can grade continuously into another). Furthermore, regional variations in pronunciation are far greater than regional variations in spelling.

The relationship between letters and syllables has been occasionally explored in Word Ways -- long one-syllable and two-syllable words, as well as words with many syllables per letter. Homonyms (words sounded the same but spelled differently) and heteronyms (words spelled the same but sounded differently) are inverse concepts which can be developed in such surprising ways as homonymic sentence-pairs and heteronymic sentence-pairs.

The classification of words according to meaning is decidedly less satisfactory. Certain topics in this section are related to the structure of language -- how words are related to each other. Just as words can be classified by means of their letters or syllables, so can they be classified by meaning: synonyms and antonyms. In conveying meaning, the structure of language becomes important, and words play many specialized roles: parts of speech, tenses and conjugations, singulars and plurals. Of almost equal importance is the distinction between the objective meaning of a word (as given in a dictionary) and the subjective meaning of a word (how people react to it): connotations.

Other topics are related to the problems that people encounter in communicating thoughts and ideas by means of language. Problems arise in meaning because language is not a static thing; in the words of a well-known language character, one may find a word to different human devis and contras.
of a well-known Protestant hymn, time makes ancient good uncouth: language change and specialization. In particular, if people cannot find a word in the existing language to express their meaning, they may invent a new one: coinages. Ultimately, language change leads to different dialects and completely different languages, and the problem of communicating meaning is solved in a more formal way: translation. Problems also arise in meaning because language is a human development; it does not always follow a logical set of rules, and contradictions can arise: ambiguities and inconsistencies.

INDEX

THE SIGHT OF WORDS

A. Properties Involving All Letters in the Word

1. Transpositions (DEARTH-THREAD-HATRED)
 - Classification: 4-letter types 4-55 4-169, 5-letter types 3-25, selected 6-letter types 3-27
 - Entries in a transposition dictionary 4-28 4-143
 - Factorization of transpositions 4-161
 - Multiple transpositions 4-3 4-143, including capitalization and punctuation 4-82 4-168
 - Specific transpositions: long words 2-24 2-119, mathematical 3-112, state names 3-222 4-14 5-15, Caroline 4-68
 - Transposition puzzles: animals 1-146 2-162, elements 1-55, countries 1-97, proverbs 1-87, anatomy 1-113, cities and states 4-119, cities and towns 5-210
 - Sentence-length transpositions: te1anagrams 3-35 3-82, transpose every word in sentence separately 3-138 5-15

2. Isomorphs (EXCESS-BAMBOO-MAUMEE)
 - Classification: 4-letter types 4-228 5-5, 5-letter types 4-113, 6-letter types 4-229 5-5
 - Isomorph dictionary need 4-227, fulfillment 5-3 5-205
 - Specific word patterns 3-48 4-131 4-135 5-5
 - Longest non-unique word pattern, shortest unique pattern 5-44
 - Ambiguous substitution ciphers 3-241 4-55 4-119
 - Simultaneous isomorphs and transpositions 5-104 5-174
 - Palindromes (DEIFIED): long 3-5, each central letter 4-133 4-210 5-6, Abplanalp 5-113 5-177, catoptrons (mirror reflection) 1-39 4-92 4-144
 - Switch words (IN/TERPRET/IN/G): 1-11 2-59 5-6 5-205
 - Tautonyms (MURMUR): 1-142 5-24 near tautonyms 5-24

3. Anagrammatic Isomorphs (BUGABOO-MILLION-COXCOMB)
I

4. Length of Words

Dictionary words, 23-plus letters 5-82 5-145 5-205, longest
Websterian word 1-33 4-116 5-22, one-letter words 5-238
Chemical nomenclature 1-33 4-56 4-80 French place name
1-230 4-24

B. Properties Involving Some Letters in a Word

1. Letters in Specified Position in Word

All beginnings/endings (ToucH): long words 3-32 4-45 4-195
5-15, short words 3-33 5-40 5-81
Heads 'n tails words (UNDERgroUNDER): 1-249 2-186 3-48
3-107 4-170, each central letter 4-132 5-6 5-24, center
also a word 5-181
Doubled beginnings/endings (AAII): 1-17
All terminal bigrams 3-152 5-211

2. Isolated Letters, Any Position in Word

Several rare letters (JuKeboX): 1-69 1-249 3-180 5-162 5-206
Each vowel once (hOUsEmAId): all vowel orders 2-208 3-18,
uoiea 1-25, uoiea 1-206, each vowel twice (thrice) 3-18
3-147 5-17
High proportion of vowels 1-138 2-136 3-213, low proportion
(abstemious words) 1-138 2-133 5-26 5-51 5-108 5-174
Shortest words, three letters same 4-135 5-7, four same 2-53
3-147 3-181 5-7 5-23, five same 3-252 4-144 5-7, most
letters of one kind 5-23, most different letters 5-22

3. Isolated Letter Groups, Any Position in Word

Bigrams (bUXom): sample dictionary 2-215 3-19, xx 1-198 5-14
Trigrams (reGALe): sample dictionary 2-166 2-245 3-17 3-253
three letters same 2-52 2-203 3-17 5-7, abc-xyz 5-22, gal
4-242, all-vowel trigrams 4-59 4-81 4-124
Multigrams: 4-52 4-116 5-23, internal palindromes 1-12 5-23
Repeated bigrams, trigrams (INsINuatNg): 3-176 5-25, suc-
cessive doubled letters (bOOGKKeEper) 1-152 1-218 4-180
Alternating monotonies (sYzYgY): 1-31 4-77 5-23

4. All 26 Letters Used (Pangrams)

Sentences using all letters at least once 1-101 1-116, at least
twice 4-181 4-209, word sets using all letters at least once

4.

Natural
neeed

5. Symbols

Special
Arabic
International
Superf
Most a
mo

6. Omiss

Test for
 Constru
5. Symbols, Arabic and Roman Numerals, Internal Capitals
 Special symbols needed 4-152 4-208 5-29
 Arabic and Roman numerals 5-24 5-57 5-80
 Internal capitals in words 5-72 5-204
 Most accents (French) 1-25, most hyphens 3-235 5-144,
 most dotted letters 1-169

6. Omission of Letters from Words (Lipograms)
 Test for existence 2-138, examples 2-30 2-139 3-18
 Construction of a 9-symbol alphabet (plus space) 5-214

C. Properties of Letters in Groups of Words

1. All Words Same Length, Transposition Allowed
 Mutually non-overlapping word sets (Jotto): 1-21 2-58 5-81
 Partially overlapping sets of isograms: each m-word subset
 has one common letter (OGLED-GRAP POISE-GRIDS- SOLAR-PLAID) 1-21 5-67 5-81, each pair of letters ap­
 pears in n words (SET-SEA-SAT-EAT) 1-212 4-69 incom­
 plete 4-69, each pair of words has one common letter and
 each letter-pair appears in only one word (ADO-ORE-BAR­
 BOY-YEA-BED-DRY) 1-214 5-78 5-143, variable degree
 of overlap in word set 2-59
 Partially overlapping sets of near-isograms (BIBLE-ATLAS- GOOSE-THIGH): 1-216 2-185 5-8
 Dice Words (ERA-RAP-IRE-RIP-EAT-PAT-TIE-TIP): 3-29
 Single-letter substitutions (sexual-queal): 2-59 4-68 4-71

2. All Words Same Length, No Transposition Allowed
 No word-pair has same letter in same position (Crash): 1-216
 Crash scores: word lists crashing all but one word in the dic­
 tionary 5-50 crashing all words 4-115 5-50 5-104
 Word ladders (LESS-LOSS-LOSE-LORE-MORE): specific lad­
 ders 1-26 1-239, French ladders 2-195, isolanos - no lad­
 der connection possible (STYZGYI) 2-62 3-108 4-147, ona­
 lysis - ladder connection possible anywhere (BEAR: TEAR- BOAR-BEAR-BEA T) 3-108 4-171 5-53
 Garble groups (BAT-BIT-BUT-BAG-BIG-BUG): 1-156 1-165
 3-144 3-211 4-15, alphabetic triliterals 5-120
 Single-letter substitutions (value-va lle): 1-151 2-70

3. Word Steps
 Word chains or rings (AraBioCoDuE..): 3-32 3-211 3-228
 Word Stairs (WAS-ASH-SHE-HER-ERA..): 1-154 3-49 4-72
 Word progressions - stairs plus transposition (NICE-COIN­
 LION-LOAN..): 1-215
4. Group Transpositions
 Word squares: 4x4, all letters different 3-173, 4x4 5x5 fewest different letters 5-104 5-172, 5x5 square of 24 different letters transposable to words 2-58, 6x6 contest 5-207
 Word cubes and hypercubes: 4-147 4-202 4-208
 Specialized 5x5 word squares: 2-221
 Pig-Latin squares: 5-48 5-172
 Pentomino word puzzles: 2-112 2-153 2-157 3-19 3-94 3-147 4-75

5. Insertion and Deletion of Letters
 Successive curtailment (WARNs, WARN, WAR) 4-71
 Successive transdeletion (A,AT,TEA,RATE,STARE): 4-73, transdeletion index 4-109
 Insertion, deletion puzzles: add letter to word, form another 4-211 5-225, guess word after commonest letter deleted 2-145
 Hospitable (RAP: TRAP, REAP, RASP, RAPT) and charitable (SEAT: SEA, SET, EAT) words 4-171 5-53 5-109,
 hostile and stingy words 5-54 5-109
 Charades (words inside words): complete filling (IN-DISCRY-NATION) 3-114 3-118 4-105 4-116 2-205, partial
 filling (Greek letters) 4-169, word deletion sentences 2-73 2-81

D. Properties Based on Letter Order In the Alphabet

1. Relative Alphabetic Position
 Words with alphabet-adjacent letters (FUDGE): 4-10 4-144 5-22
 Words with alphabet-adjacent letters in order (ABsConD): 4-207 5-22
 Words from first half of alphabet: 1-35 5-26
 Last word in dictionary beginning with specified letter: 5-186
 Word shifts combined with transposition (MUSIC-UCAQK): 2-25

2. Letter Scoring (A = 1, B = 2, ...)
 Numerical tautonyms (BULK 2 + 21 = 12 + 11): 3-10 3-151 3-244 4-82 4-185, multiplicative 3-13
 Difference words (ICE 9-3-5 from FORM 6-15-18-13): 3-231 4-139 4-209
 Words with invariant letters (position in word = score): terminal letter only (fudgE) 4-96, many invariant letters 5-133
 5-206, alphabetical invariance (INOPErATIve) 5-140
 Poker words: 4-115 5-105 5-173
 Subtranspositions (TO 20x15 = BEEF 2x5x5x6): 2-28
 Centrally balanced beam words (AXLE 1x3 + 24x1 = 12x1 + 5x3): 2-37
 Words with low (high) average score: 5-226

E. Properties Using Words (not Letters) as Basic Units

Transpositions: two (three) poems using same stockpile of words 2-18 2-85 3-140 3-209 4-83 4-143, analysis of similarity of two such poems 3-86
THE SOUND OF WORDS

1. Syllabification

Syllable count of words: 2-180 3-78 3-109 3-173 5-27, two-syllable words 1-88 3-79 3-148 4-117 5-26
Words with high syllable/letter ratio: 2-180 3-45 3-77 3-148 4-117 5-27
Add letters, reduce number of syllables 3-49

2. Homonyms (RIGHT, WRITE, RITE, WRIGHT)

Examples 2-184, three different initial letters, none sounded: 4-8, two homonyms with no common letters 1-144, homonyms with transpositions also homonyms: 2-120
Rhymes (terminal homonyms): one-syllable words rhyming with A 1-22 1-224, V-W rhymes (VERILY-WARILY) 5-122 5-166, sight rhymes 1-243, oh-rhyme terminated with 15 different letters 5-235
Homonymic sentence-pairs 2-143, French pairs 2-142 3-101
English-foreign pairs 3-232
Sentences of homonyms (I EYE AYE-AYE) 5-131 5-204, stutterances (GOD, FREE GODFREY) 5-146

3. Heteronyms (Polish, polish)

Examples 1-107 1-151 2-150 4-9, literary format 1-219
Sight rhymes (terminal heteronyms): 1-243, -OUGH variations: 4-118
Heteronymic sentence-pairs 2-7 2-142, Foster compounds 2-205

4. Writing-Speaking Inconsistencies

Writeable but not speakable, and vice versa: 3-48
Letter sounded in word but not written: 3-168, letter written in word but not sounded: 3-168
Change one letter, strongly alter pronunciation (CHEMISE=CHEMIST) 3-49
Sentences difficult to pronounce 1-144, hardest word to pronounce 4-8, no pronunciation given 3-80 4-8, strange pronunciations 5-150, wordy definition of a pronunciation 3-235

5. Spelling

Spelling illogic (GHOTI = FISH) 2-119, simplified spelling movement 4-40, "S as in sea" ambiguity 5-171, W spelled like U
THE MEANING OF WORDS

A. The Structure of Language

1. Singulars and Plurals

One plural, many singulars 2-182 3-47 3-199 5-28, one singular, many plurals 2-182 3-47 3-201 3-211

Words simultaneously singular and plural 3-198

Plurals ending in every letter of alphabet 3-169 3-198

Add letters at end to form plural 3-195 4-19 5-28, inside word 3-196 4-80, at beginning 3-197, subtract letter s 4-19 3-197

Words existing only in singular or in plural form 3-196 4-80

Plurals unlike singulars 3-195 3-211 4-23

False plurals 4-176, collective nouns 5-230

Plurals spelled same, pronounced differently 4-24

Formation of plurals by "singular" rules 4-19

Special plurals: lexemes 4-20, -MAN words 4-22, containerful plurals 4-21

2. Parts of Speech, Tenses, Conjugations

Most consecutive verbs 3-66, different verbs but same noun form 2-182, past tenses 5-28

Most prepositions ending sentence 1-172 3-83

Adjectives following their nouns 3-109 4-52 4-117, adjectives not changed to adverb by adding -LY 3-110, adjectives related to the major planets 4-173

Definite article: 5-208, 5-233

"If I was the President..." 2-186 3-48

3. Subjective Meanings (Connotations) of Words

Word association test 3-238, sandwich fillings 3-43, crossword puzzle 2-68

Comforting words 3-60, immoral words starting with L 1-38, beautiful words 2-69 4-52 5-16 5-111, ugly words 2-69, beautiful words, ugly context 5-144, dangerous word 5-153, sad words 3-92, euphemisms for jobs 1-105, pejorative words 5-76

4. Synonyms and Antonyms

Words with essentially same meaning 2-123 3-175 3-233

Same spellings, two opposite meanings 2-118 2-179

Redundant words (first half, last half synonyms) 2-125

Synonym-transpositions 4-170 5-173 3-233, synonym-palindromes (different languages) 4-241

Internal synonyms (callumnes) 1-245

B. Problems in Communication

1. Language Change and Specialization

Problems of change 3-102 3-170 4-174 4-238, shifted meanings

2. Coinage

Degree: 4-159, Long prepositions, prepositions, noun prepositions, redundant words, adverbial words, pleonastic words, new words, artificial words, Help File Product Specificity, 3-19

3. Translation Problems

Foreign language, English, English.

4. Ambiguity

Irish, Latin, New words, Self-definition, Linguistics

ENTERTAINMENT

1. Poetry

Relating

Transp

4-1

1

2-1

2-2

2-1

0

1-1

Lipography

Change
2. Coinages of Words

Degrees of word admissibility 4-120

Lang palindromes 3-5, long transpositions 3-136, multiple isograms 5-102, strong & weak verbs 5-98, successive doubled letters 4-180 1-120, pyramid words 5-236

New words in print 1-71 5-95 5-143 5-204

Artificial language 4-241, Pig Latin 3-44 3-175

Help Fill Word Gap 2-48, un-negatives 2-119

Product names 1-71 5-95 5-143 5-204

Specific coinages 1-86 2-3 (logology) 2-52 2-55 2-57 3-49 3-81 3-180 3-236 3-222 4-11 4-14 4-144 4-171 4-207 5-69

3. Translation

Problems with poetry 4-46, specifics 4-174 4-218 5-15, extraterrestrial 1-202, birds 2-79, bees 4-53

Foreign language "looks" English 2-134 4-241 5-179, "sounds" English 3-232

4. Ambiguities and Inconsistencies

Irish bulls 3-104, contradictory proverb-pairs 4-210 4-137

legal inconsistencies 5-228

Newspaper, magazine, song boners 3-45 3-111 3-170 3-232 3-234 4-50 4-237, Mystery news 3-145, blunders 2-163

Self-descriptive words (autologs) 2-182 4-240 5-171, "up to and more" 4-237, exception to every rule 5-46

Linguistic illusions 5-11 verbal illusions 5-81

ENTERTAINMENTS

1. Poetry

Relation of poetry to word-play 2-4

Transpositions: lines letter-transposals of each other 2-13 3-107 4-172, two poems using same set of letters in corresponding lines 2-16, two (three) poems using same stockpile of words 2-18 2-85 3-140 3-209 4-83 4-143

Palindromes: how to compose 5-55 5-220, line-by-line in poem 2-20 4-250 5-80 5-221, whole poem 1-17 1-153 2-7 2-20 2-135 4-249 5-223, using words as units 4-249, poems explaining a palindrome 2-32 2-49 2-55

Acrostics: 1-53 1-112 1-180 1-199 2-83 2-140 3-203 4-51 5-195, lines beginning JAN, FEB.. 2-31, acro-double (triple) 2-159 3-203 4-251 5-196, anachuttles 2-82 3-204 5-116

Lipograms 2-30 3-18 2-138

Change line-lengths, change mood of poem 5-170
Rhyming oddities: spoonerhyme 3-42 3-173 5-91, backward rhymes 3-171, slight rhymes 1-243, limericks 5-175 3-42
Word chain poem 4-62, contrapositive poem 4-236, four-letter word poem 3-42
Puzzles in rhyme: rebuses 1-70, Richmond Riddler 3-109 3-174
Poems on logological subjects: Web III 3-237, Oxford English 5-53, puzzlers 1-32, beautiful words 5-112 5-144
Miscellany 2-80 1-43 2-181 4-118 4-252 4-240 5-138

2. Forms and Crosswords
Forms: diamond 1-88, hollow diamond 4-91, Presidents and Vice-President 5-182, state names and nicknames 4-232
Crosswords: origin of puzzle 2-50, reader query 5-143
Small crosswords: 2-122 3-103 2-187 3-169 1-178 1-242 4-50 4-117 4-173
Specific crosswords: charade 1-94 3-177 4-177, Azuriel 1-227, obscure clues 1-5 1-67, vowels 2-136, consonants 2-133, palindromes 4-102, reversals 4-203, word association 2-68, Bible double-crostic 1-217, clueless 5-51, reconstructible 3-56, Bible clues 1-131, amorphous amoeba 1-160, "8800" 1-195, pangrammatic 3-53 3-83
Related pastimes: Pig-Latin squares 5-48 5-172, spiraling alphabets 2-67, word chess 1-201 1-236 2-165 3-40 3-82 3-148 French chess 2-197, word maze tracing 1-110 1-181 1-244 2-116 2-131 2-132

3. Cryptography
General discussion 1-99, how to solve 5-4 humorous 1-102
Mincrypts: 2-123 2-185 2-186 3-48 3-172 3-236 5-16 5-54 5-114 5-179
Ambiguous ciphers: 1-101 2-49 3-241 4-55 4-119
Penney's cryptographic puzzles: 3-14 4-14 5-119
Three-way ciphers: 5-115 5-179 5-181
Encoding abbreviations 2-121, sandwich crypt 4-239, unsolved crypt 1-224, dictionary codes 5-180
Rebuses 3-103 4-245 5-52 5-88 5-115 5-201, Loony logos 4-78 4-144 5-9, identify the sequence 4-173

4. Games
Crash: 4-31 4-98 4-156 4-221 5-32 5-94 5-315 5-215
descriptive 2-185 3-44 4-50 5-51
wild crash and uncrash 5-108 5-215
Scrabble: 4-32 4-97 4-155 4-220 5-34 5-46 5-93 5-154 5-216
highest scores 5-99 5-218
Sinko 3-106 5-35 5-93 5-155
Toller vs. Spoiler 5-113 5-175, The Oilers 5-113 5-176
Ghost 2-121 4-212
The Last Word 3-105 4-214
Jotto 1-21 5-107
Alphabet sports 3-183, Transposition 4-88, license plate game 2-107, word poker 4-113, predict your middle initial 5-231
Requisite 5-206

5. Fiction
Linguistic Ten
 Acrostics Transper Log Fun's 3-44
Puns Jests Clues What's
Lewis Allan
Jargon 4-10
Humor polly
occ point
Miscell of L

Diction 1-58
Other P
Lett
Th
Locs
-Ol
1-1
ste
Names
Trek
Nam
Games
30C
Th
1-1
Sea
Poetry
sm
Eng
The
Miscell Diction 3-1
5. Fiction and Humor

Linguistics: Periodic Table of Elements 1-134, Superl 4-182, Ten Logotopian Lingos 3-215 4-34
Acrostics: The Case of the Acro-Double 5-195
Transpositions & Palindromes: Baleful Tale of Hale & Gale 3-70, Logology Class in Transposal 3-136
Puns: 3-172 3-176 5-113 5-169, punetic alphabet 1-183 5-111, Jesus the Punster 3-163, Tom Swifties 2-184 Charade Swifties 5-18, Mrs. Malaprop the Adwoman 5-45, In-Famous Classics 4-246, Specialty Definitions 3-30
What’s the Question: 3-104 3-238 4-52 4-116 5-105
Lewis Carroll parodies: Helico-Spherical Cocktail Party 1-143, Alice In Pizzeland 1-18, Lewis Carroll Society 2-199
Jargon: Assination of English 1-136, Old Wine in New Bottles 4-16 (also 1-7), A Tight Squeeze 3-230
Humorous Collections: prostitutes 1-205 2-124, legal 3-45, politics 5-51, Yellow Pages 5-171, ship names 3-102, occupational avoidance 5-156, alphabet soup 4-158, pseudo-opposites 3-43 3-174, abridged Broadway songs 5-174, point of view 2-183, epithets (hinky-pinkles) 4-49 4-116 3-19
Miscellany: Puzzle Shop of Uncle Rebus 2-212, Lawless Lords of Logomycin 2-33 5-107, Attention Peditastelli 3-166, Onomancy 2-90, Sobriquets of Ultra chess 2-231

6. Book Reviews, Dictionary Errors or Inconsistencies

Dictionaries: Webster’s Third 1-246, Random House Unabridged 1-58, Compact Oxford English 4-210 5-206
Names & Numbers: Universal Nomenclature for Numbers 1-185, Treasury of Name Lore 1-184, English House Names 5-79, Names on the Land 3-209, American Place-Names 3-209
Poetry, Humor, Satire: Comic Alphabets 1-182, Brian Wildsmith’s Wild Animals 1-182, The Sot-Weed Factor 5-175, English As She Is Spoke 3-239, The Fantastic Acros 4-14, The Best of Bloopers 5-233
Miscellany: Personalities of Language 4-242
Dictionaries errors and inconsistencies: 1-139 1-235 2-30 2-120 3-18 3-85 3-122 4-8 4-26 4-117 4-216 5-16 5-27 5-29 5-71 5-81 5-134 5-145
7. Place Names, Personal Names

Personal names: Infer given name and surname from initials
1-240 3-19 3-109, given names that are dictionary words 2-89 3-235, John in other languages 3-239, surnames that have become dictionary words 3-95, color surnames 5-199, odd sobriquets 2-237, transpose state name into personal name 3-39, odd famous middle names 1-111, famous first initials 4-38, longest surname in phone book 3-108, long middle name 2-55, long Bible name 2-47, palindrome premiers 3-176 palindrome detty 1-128

State names: state and capital charade sentences 3-54 3-84 3-149, state abbreviations dictionary words 3-116, state name charade 3-118, linked chain of states and towns 3-220 4-15, anagrams of state names 3-222 4-14 5-15, town-country-state common name? 4-163, state name etymology 5-232

Town names: English town isograms 3-15, names with logological properties 3-131, oddities 3-135 3-211, presidents in town names 3-332 3-210, chemical elements in town names 3-332 3-209, astronomy in town names 3-133, Greek letters in town names 3-209, letter homophones 4-209, numbers 4-13, town-pairs matching given name and surname of famous person 4-13

Miscellaneous: English place name pronunciations 4-117 5-36, order of countries named in wars 3-240, first place name in alphabet 3-181, names for "street" 1-230 3-81 3-91, longest French place name 1-230 2-124, letters not in common in (country, capital) puzzle 4-244, old names of countries 2-180 1-104 of cities 1-107, Connecticut lake palindrome 1-128, colleges named by town location 5-232

8. Mathematics and Technology

Autological words: described by number of letters 3-46 3-175 2-179, by Morse code symbols 1-207, by number of pen strokes 3-47 4-80, convergence in English 5-80

"To The Fair Fluke" series 4-39 4-82, alphametics for 10-digit squares 3-123, alphametic puzzles 5-47, square, prime, Fibonacci words 5-51 5-108, a literal addition 3-169, integers arranged alphabetically 4-115, charade sentence of integers 1-109, pi mnemonic 1-146

Technology: telephone dial words 3-171, typewriter order of alphabet 1-25 3-176 4-118, chemical substitutes (Fey-Irony) 4-51 4-116 4-169

9. Collections of Words

Musical groups 1-8 3-207 3-212, hep-vocab 3-248, mathematical curves 1-226, large number nomenclature 1-28 1-89, shapes 3-43, geometric solids 1-109, asteroids 4-164, medical 1-170 4-84 4-172 3-45 5-114, occupations 5-96, short order cook language 3-23, nouns of collection 5-50, groups of size twelve 2-186 3-47, French menu 1-239, foreign borrowings 5-30, Amerind names 3-229, curious monikers 5-190, old names for chemical elements 4-224, animal adjectives 2-120, necking 1-22, generalissimos 1-98

ANSWER THE CASE Dr. Murcher's letters of the

Pity Stub Yet Cuck Hate

If on Ang Fun

Sure

To a

The word an additional C

MORE ENI

39. upland 42. nonexistence at a time 47. one 47. cow 51. inches 51. 54. under current Madding Cr letters 59.

62. onion still able entendre thee behind idity 72. under interest 76. the right side 80. nightingales fast, dinner

ANYTHING

1. fran - fru 5. pur 8. em - em