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Electron trapping in a one-dimensional semiconductor quantum wire with multiple impurities

S. Tanaka,1 S. Garmon,2 G. Ordonez,3 and T. Petrosky2,*
1Department of Physical Science, Osaka Prefecture University, Sakai 599-8531, Japan

2Center for Complex Quantum Systems, The University of Texas at Austin, Austin, Texas 78712, USA
3Physics and Astronomy Department, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, USA

�Received 7 September 2007; published 19 October 2007�

We demonstrate the trapping of a conduction electron between two identical adatom impurities in a one-
dimensional semiconductor quantum-dot array system �quantum wire�. Bound steady states arise even when
the energy of the adatom impurity is located in the continuous one-dimensional energy miniband. The steady
state is a realization of the bound state in continuum �BIC� phenomenon first proposed by von Neuman and
Wigner �Phys. Z. 30, 465 �1929��. We analytically solve the dispersion equation for this localized state, which
enables us to reveal the mechanism of the BIC. The appearance of the BIC state is attributed to the quantum
interference between the impurities. The Van Hove singularity causes another type of bound state to form
above and below the band edges, which may coexist with the BIC.

DOI: 10.1103/PhysRevB.76.153308 PACS number�s�: 73.20.Hb, 73.21.Cd, 73.21.Fg, 78.67.Lt

One-dimensional semiconductor quantum wires �1D-
QWRs� have been extensively investigated theoretically and
experimentally over the past two decades.1–3 Thanks to ad-
vances in nanotechnology, various ways to manufacture
semiconductor 1D-QWR have been developed.4 The quan-
tum confinement of electrons in these structures greatly
modifies the density of states of carriers resulting in com-
pletely different electronic and optical properties from the
bulk system.1–4 The 1D-QWR has also been fabricated in
metallic systems and organic molecular systems.5,6

In a previous report,7 we presented the charge transfer
from an adatom localized state to the 1D conduction mini-
band associated with a quantum wire or quantum-dot array.
Due to a singularity in the density of electron states at either
edge of the electronic miniband, there is a nonanalytic g4/3

enhancement of the charge transfer rate when the adatom
energy is near the band edges, where g is the dimensionless
coupling constant describing the hybridization interaction
between the adatom localized state and the miniband. We
also presented Fano’s absorption spectrum attributed to the
transition of an electron from a core level of the adatom to
the conduction miniband, with which we were able to explic-
itly separate the irreversible Markovian exponential decay
and the reversible non-Markovian power law decay contri-
butions to the time evolution of the system.

Here, we shall report a different phenomenon: electron
trapping between two identical adatoms in the 1D miniband
due to quantum interference. The physical situation we con-
sider in this Brief Report is depicted in Fig. 1�a�. We find that
a bound steady state appears even when the energy of the
adatom impurity energy is located in the 1D miniband such
that an electron is trapped between the two identical ada-
toms. The steady state is an example of “bound states in
continuum” �BIC� first proposed by Von Neumann and
Wigner8 for oscillating attractive potentials. Since then, a
number of theoretical studies of BIC have been reported.9,10

Experimental evidence of BIC has also been reported in
positive energy bound states in superlattice structures of
quantum wells with a single impurity site11 or in a single
defect stub.12 In a recent article, one of the authors presented
another example of BIC in a double-cavity �or double-dot�,
two-dimensional electron waveguide.10 In this Brief Report,

we shall present this interesting feature of BIC in a 1D-QWR
with multiple impurities, which is physically quite different
from the waveguide.

We consider a 1D-QWR consisting of N+1 quantum dots,
where we consider a single bound state for each quantum
dot, as shown in Fig. 1�b�. An electron can tunnel between
these bound states through the transfer integral −B /2, which
leads to the formation of the continuous 1D miniband along
the wire with the width B in the limit N→�.1–3 In the
present work, we assume that the lateral extent perpendicular
to the wire axis is small such that the quantum confinement
in a given quantum dot is so strong that the energy separation
between the lowest bound state and the first excited bound
state in that dot is far larger than the 1D miniband width.
Therefore, we can consider electron transport along the chain
without causing any excitation perpendicular to it.

In addition, the adatom states with energy E0 are located
at the nth and �−n�th sites; they are hybridized with the
bound states within these dots with the coupling strength g
because the size of the quantum dot, which usually ranges

FIG. 1. �a� Two identical adatoms attached to a 1D quantum-dot
array and �b� level structures of the adatom localized states and the
bound states in each quantum dot. The adatoms are located at the
nth and �−n�th dots.
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from several to hundreds of nanometers, is far larger than the
size of the adsorbates. We shall simply refer to the adatom
localized states as the impurity states. We represent this
single electron system by the tight binding Hamiltonian in-
cluding the two impurity states hybridized with the miniband
as

H = E0�d−n
+ d−n + dn

+dn� −
B

2 �
�l,l��

ãl
+ãl� + gB �

l=−n,n
�dl

+ãl + ãl
+dl� ,

�1�

where d−n and dn are the fermionic annihilation operators for
the electron in the impurity states, ãl is the fermionic opera-
tor representing the bound state in the lth quantum dot, and
the symbol �l , l�� represents the sum over nearest neigh-
bors. We introduce the wave number representation ak

=�l=−N/2
N/2 ãle

ikl /�N+1 and impose the usual periodic boundary
conditions on the 1D-QWR that will result in a continuous
energy spectrum for the miniband in the limit N→�. For
finite N, we have a discrete wave number with kj =2�j / �N
+1�, where j is an integer that runs from −N /2 to N /2. The
Hamiltonian H is then cast into

H = E0�d−n
+ d−n + dn

+dn� + �
j=−N/2

N/2

Ekj
akj

+ akj

+
gB
�N

�
�=−n,n

�
j=−N/2

N/2

�dl
+akj

eikjl + akj

+ dle
−ikjl� , �2�

where Ek=−B cos k is the energy dispersion of the miniband,
which leads to the density of states ��Ek�	 1

� �B2−Ek
2�−1/2

with singularities at both edges of the miniband, Ek= ±B.
One advantage of 1D-QWR is that one can change the value
of B by changing the potential barriers between the quantum
dots using precise nanotechnology1,2: the value of B is esti-
mated to be about 
140 meV for GaAs/AlGaAs QWR
when the adjacent distance of the quantum dots is 
25 nm.1

The parameter gB is the coupling constant representing the
charge transfer between the adatom and the semiconductor
surface, and it has been estimated to be less than 70 meV for
physisorbed molecules on the semiconductor surface.13

The Hamiltonian may be decoupled by introducing sym-
metric �s state� and antisymmetric states �p state� both for the
impurity states and the 1D miniband �with mode k� through
s	�dn+d−n� /�2, p	�dn−d−n� /�2, Sk	�ak+a−k� /�2, and
Pk	�ak−a−k� /�2. We then have H=Hs+Hp, where

Hs = E0s+s + �
j=0

N/2

Ekj
Skj

+ Skj
+

2gB
�N

�
j=0

N/2

�s+Skj
cos�kjn� + H.c.� ,

�3a�

Hp = E0p+p + �
j=0

N/2

Ekj
Pkj

+ Pkj
+

2igB
�N

�
j=0

N/2

�p+Pkj
sin�kjn� − H.c.� ,

�3b�

where H.c. stands for Hermitian conjugate. Both Hs and Hp
take the form of the Friedrichs-Fano �Newns-Anderson�

Hamiltonian,16–19 which has been used extensively to de-
scribe the electronic states of adsorbates on metal and semi-
conductor surfaces.20 These bilinear Hamiltonians can be di-
agonalized by a linear transformation.7,16 However, we do
not need the explicit form of the transformation for our pur-
poses in this Brief Report.

The self-energies for the s and p symmetrized impurity
states are given in the limit N→� by

�s,p�z� =
g2B2

2�
�

−�

�

dk
1 ± cos�2kn�
z + B cos k

=
g2B

��2 − 1
�1 ± �− � + ��2 − 1�2n�

=
g2B

i sin 	
�1 ± ei2n	� , �4�

where we have put �	z /B=−cos 	. In Eq. �4�, the 
 sign is
for the s state while the � sign is for the p state. Care must
be taken when choosing the appropriate branch for the ana-
lytic continuation of ��2−1 so that the localized state will
decay toward the future.21

The solutions of the dispersion equation for the s and p
symmetrized states,

�s,p�z� 	 z − E0 − �s,p�z� = 0, �5�

consist of the pole in the lower-half complex plane in the
second Riemann sheet corresponding to the unstable decay-
ing state and the poles on the real axis of the first sheet
corresponding to the stable states.

It is found from Eq. �4� that as z moves on the real axis
from −B to B, the self-energies for the s and p states peri-
odically vanish as exp�i2n	m�= 
1 �� and 
 signs are for
the s and p states, respectively� at z=Em, where
Em=−B cos�m� /2n�	−B cos�	m�, with m=1,3 , . . . ,2n−1
for the s state and m=2,4 , . . . ,2n−2 for the p state. As an
illustration, we show the real part and imaginary part of
�p�E� for the p states in Fig. 2 for the case of n=4, where
the horizontal axis stands for E /B. As shown, Re �p�E�
=Im �p�E�=0 at 	m=2� /8, 4� /8, and 6� /8. The real and
imaginary parts of �s�E� for the s states are also shown in
Fig. 3 for the case of n=4. In this case, for 	m=� /8, 3� /8,
5� /8, and 7� /8, Re �s�E�=Im �s�E�=0. It should be em-
phasized that the values of Em do not depend on the coupling
constant g, that is, the position of Em is exclusively deter-
mined by the energy level structures of the 1D miniband as
will be shown below.

The solution of the dispersion equation �Eq. �5�� is deter-
mined by the intersection of E−E0 and ��E� as a function of
E. Therefore, when E0=Em, z=E0 is a stable solution of the
dispersion equation in the 1D miniband; this gives a BIC
state which never decays even though the energy E0 is lo-
cated in the 1D miniband, irrespective of the coupling con-
stant g. The number of such solutions Em increases as the
separation between the impurity sites 2n increases: n−1 is
the number of solutions for the p state and n for the s state.

We shall now show that in the BIC states, the electron is
completely trapped between the two impurity sites. We con-
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sider the s symmetry case �the p symmetry case can be dem-
onstrated in a similar manner�. In terms of the site represen-

tation, the symmetrized basis is given by �S̃0�= �ã0� and �S̃l�
= ��ãl�+ �ã−l�� /�2 for l=1,2 , . . ., where �ãn�	 ãn

+�0�, etc., with
�0� the electron vacuum state. In terms of this basis, Hs is
rewritten as Hs=Hin+Hout, where

Hin = E0�s��s� + �
l=0

n−1

vl��S̃l��S̃l+1� + H.c.� + gB��s��S̃n� + H.c.� ,

�6a�

Hout = �
l=n

�

vl��S̃l��S̃l+1� + H.c.� . �6b�

In Eqs. �6a� and �6b�, v0=−B /�2 and vl=−B /2 for
l=1,2 , . . .. Let us first consider the eigenvalue problem of

Hin instead of Hs: Hin���
in�= Ẽ�

in���
in�. For the eigenstate of

Hin, it can be proven that

Ẽ�
in − E0 = gB

�S̃n���
in�

�s���
in�

. �7�

It follows from Eq. �7� that if Ẽ�
in=E0 �as we have discussed

in the case for the BIC�, the eigenstate does not involve the

�S̃n� component, i.e., ���
in�= ��s��s�+�l=0

n−1�S̃l��S̃l�����
in�. As a re-

sult, the state ���
in� does not couple with the outer states of

�S̃l� �l=n+1,n+2, . . . � through Hout. That is, it is completely
localized within the two impurities; it is also an eigenstate of

the total Hamiltonian Hs: Hs���
in�= Ẽ�

in���
in� with Ẽ�

in=E0.
We show the explicit form of the eigenstates for

some cases: the BIC for the n=1, s case is written as

��1,s�= ��s�+�2g�S̃0�� /�1+2g2, with Hs��1,s�=0, and

for the n=2, p case ��2,p�= ��p�+2g�P̃0�� /�1+4g2, with
Hp��2,p�=0. For the n=2, s case, they are represented

by ��±
2,s�= ��s�+2g��S̃1�± �S̃0��� /�1+8g2, with Hs��2,s�

= ± ��2,s� /�2. On the other hand, the eigenstates of Hs with

eigenvalues different from E0 necessarily involve the �S̃n�
components, such that those states couple with the outer
states and are therefore delocalized. This is consistent with
the ordinary observation that the continuum under most cir-
cumstances has a destabilizing effect. However, below, we
will discuss an exception which results in a different kind of

bound state, even though Ẽ�
in=E0 is not satisfied.

The mechanism by which these steady states occur inside
the continuous energy spectrum may be understood as fol-
lows. Suppose that an electron is localized at one of the two
impurity states. Due to the resonance interaction with the 1D
miniband, the impurity state decays spontaneously into the
1D miniband emitting an electron wave, as shown in Fig. 4.
When the free electron wave reaches the other impurity, the
electron transitions into the other localized impurity state.
This impurity state also decays into the 1D miniband due to
the resonance interaction, just as the first site. The emitted
free propagating electron wave thus goes back and forth be-
tween the impurity sites, just like a ping-pong game.14 Our
results show that one can practically manufacture such a
semiconductor 1D-QWR with double impurities that the

FIG. 2. The real part Re �p�E� and the imaginary part Im �p�E�
of the self-energy of the p state for n=4 as a function of real E,
where the horizontal axis stands for E /B. Inside the miniband
E /B=−1 to E /B=1, there are three points of Em where ��Em�=0.
In the figure, we indicate the value of 	m corresponding to the Em’s.
No divergence in �p�E� occurs at the band edges.

FIG. 3. The same plot of the s state for n=4 as in Fig. 2. Inside
the 1D miniband, there are four points of Em where ��Em�=0. The
value of 	m corresponding to the points of Em are indicated.
Re �s�E� diverges at E /B= ±1, while Im �s�E� does not.

FIG. 4. Schematic picture of the quantum interference in BIC.
The spontaneously decaying waves constructively interfere with
each other between the impurities, while they destructively interfere
outside the impurities.
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electron waves emitted from the impurities constructively
interfere with each other inside the two impurities, while
they destructively interfere outside the impurities, as sche-
matically illustrated in Fig. 4. As a result of quantum inter-
ference, the BIC is localized between the two impurities.

As for the s state, two stable states always appear just
below and above the 1D miniband due to the divergence of
the density of states at the band edges.7,15 The wave function
of this state outside the miniband is largely extended to states
representing sites outside the impurities, contrary to the BIC.
Despite being coupled to the outer sites, this state remains
stable, as mentioned above. It is interesting that different
types of steady states coexist when the BIC appears. For the
p symmetry, however, the factor of sin�kn� in the hybridiza-
tion term in Eq. �3b� suppresses the divergence of the density

of states, such that the stable state outside the miniband does
not appear when E0 is located inside the miniband.

These BIC states in the 1D-QWR may be experimentally
observed with the use of the optical absorption spectrum as
we discussed in Ref. 7. We hope to challenge the experimen-
talist to observe this interesting phenomena through the ab-
sorption spectrum or by other means.
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material is based upon work supported by the National Sci-
ence Foundation under Grant No. 0611506. This work was
supported by the Grant-in-Aid for Scientific Research from
the Ministry of Education, Science, Sports, and Culture of
Japan.
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