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Bound states in the continuum in quantum-dot pairs

Gonzalo Ordonez* and Kyungsun Na
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 78712, USA

Sungyun Kim
Max-Planck Institute for Physics of Complex Systems, Noethnizter Str. 38, 01187 Dresden, Germany

�Received 20 April 2005; published 17 February 2006�

It is shown that for two open quantum dots connected by a wire, “bound states in the continuum” of a single
electron are formed at nearly periodic distances between the dots. This is due to Fabry-Pérot interference
between quasibound states in each dot. The bound states are nonlocal, describing the electron trapped in both
dots at the same time. Theoretical and numerical results show that trapped states exist even if the wire
connecting the dots is relatively long.

DOI: 10.1103/PhysRevA.73.022113 PACS number�s�: 03.65.�w, 73.23.�b, 73.63.�b

Ever since von Neumann and Wigner �1� proposed that a
certain type of oscillating attractive potentials could produce
isolated bound states with energies within the continuum �2�,
a number of studies have reported the existence of “bound
states in the continuum” �BIC� that can exist above the con-
tinuum minimum. Fonda and Newton discussed BIC in a
system of two coupled square-well potentials using reso-
nance scattering theory �3�. Friedrich and Wintgen found
BIC in systems of coupled Coulombic channels, such as the
hydrogen atom in a uniform magnetic field �4�. Positive-
energy bound states in superlattice structures with a single
impurity potential �5� or a single defect stub �6� have been
reported.

The existence of BIC has been theoretically demonstrated
as well in a pair of quantum dots coupled to reservoirs �7,8�.
The pair of dots is regarded as a “molecule” with discrete
energy levels. As far as we know, until now there has been
no experimental realization of BIC in quantum dots.

Here we consider a quantum-dot system where the dots
are two-dimensional square cavities connected to a lead as
shown in Fig. 1. We show both theoretically and numerically
that BIC can appear due to Fabry-Perot interference between
the quasibound states of each dot. The BIC appear at nearly
periodic distances between the dots. In contrast to Refs.
�7,8�, instead of one “molecule” we have two separate dots
that can be far apart. Therefore we study quite a different
regime of electron transport between dots.

The dots and lead are a two-dimensional electron wave-
guide, which can be formed at a GaAs/ �Al,Ga�As interface
�9�. Electron waveguides may be formed as well using
carbon nanotubes, where Fabry-Perot interference for elec-
tron wave functions has been demonstrated experimentally
�10�. In this Rapid communication we will focus on semi-
conductor waveguides. Our analysis can be easily extended
to nanotubes.

The lead in Fig. 1 is an infinite quasi-one-dimensional
wire, where electrons have a continuous spectrum of energy.

Due to the lateral confinement in the wire, the spectrum has
a minimum energy that allows propagation along the wire. If
there is a single dot, an electron inside the dot with energy
below the minimum will be in a bound state. In contrast, an
electron with energy above the minimum will be in a quasi-
bound state with finite lifetime, eventually escaping the dot
through the leads. Bound states and quasibound state are
associated with real and complex poles of the S matrix �11�,
respectively. For the double dot, the electron states are much
more varied. In this study, we focus on the interplay between
the quasibound states formed in each dot.

Theoretical model. We consider the single-electron
Hamiltonian

H = −
�2

2me
*� �2

�x2 +
�2

�y2� , �1�

with vanishing wave functions at the boundaries. The effec-
tive mass is me

*=0.05me, where me is the mass of the free
electron. We assume the two dots are identical. To analyze
this Hamiltonian, we decompose the system into two inde-
pendent closed dots and the lead �14�. The wave functions
inside the dots are denoted by �m ,n�i, where i=1, 2 labels the
dots and m ,n are positive integers representing the horizontal
and vertical wave numbers. The wave functions in the leads
are denoted by �k , j� where k is the horizontal wave number
�real� and j the vertical wave number �positive integer�. The
energies of the wave functions in either dot and the lead are,
respectively,

Ed�m,n� =
�2

2me
*	�m�

Ld
�2

+ �n�

Wd
�2
 ,

El�k, j� =
�2

2me
*	k2 + � j�

Wl
�2
 . �2�

The minimum energy for propagation along the lead is
El�0,1�. We consider an electron with low energy narrowly
centered around Ed

0=Ed�m0 ,n0�. We assume that El�0,1�
�Ed

0�El�0,2�. The electron may propagate through the first
mode of the lead, but not through the higher �j�1� modes.
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In our theoretical model, we neglect the j�1 modes, which
are evanescent, and keep only the j=1 mode. Henceforth we
omit the j=1 index—e.g., El�k�=El�k ,1�.

We will rewrite the Hamiltonian using the dot and lead
basis states. With �i�= �m0 ,n0�i, we define the dot and lead
projectors

Pd = �
i=1

2

�i��i�, Pl = 
−�

�

dk�k��k� . �3�

To make the basis states orthogonal, we introduce the modi-
fied lead states

��k� = �k� − RPd�PdRPd�−1�k� ,

R =
1

El�k� − PlHPl + i0
, �4�

which satisfy �i ��k�=0 and ��k��H��k�=El�k���k−k��. The
following approximate Hamiltonian is obtained:

H � Ed
0��1��1� + �2��2�� + 

−�

�

dkEl�k���k���k�

+ 	
−�

�

dk�
i=1

2

Vi�k��i���k� + H.c.
 . �5�

The terms Vi�k�= �i�H��k� represent the amplitude of a tran-
sition of the electron from the lead to the dots or vice versa.
For dots centered at x=x1 and x=x2, they have the form

V1,2�k� = vke
ikx1,2 + uke

ikx2,1. �6�

We will construct eigenstates of the Hamiltonian �5� fol-
lowing Ref. �12�, where the appearance of BIC for a one-
dimensional two-atom system with a Hamiltonian similar to
�5� was considered �see also �13��. We start with the sym-
metric and antisymmetric states

� ± � = ��1� ± �2��/�2, �7�

which are unperturbed degenerate eigenstates of two closed
cavities. Using these states as a basis, we build perturbed
eigenstates of H. The eigenstates retain the symmetry of the
corresponding unperturbed states �7�, but they are no longer
degenerate. In fact, they have complex energy eigenvalues z±
�12�, which are poles of the S matrix. The eigenstates decay
exponentially for t�0 �with Im�z±��0�. The eigenvalues are
solutions of the integral equation

z± = Ed
0 + 2

0

�

dk
�uk ± vk�2

�z± − El�k��+ �1 ± cos kd� �8�

closest to the real axis. Here d= �x2−x1� is the distance be-
tween the dots. The + superscript means analytic continua-
tion from the upper to the lower half-plane of z±. As the
distance d is varied, the poles z± move in the complex plane.
At certain distances d± the imaginary part of z± vanishes
�12�. This happens when 1±cos kd±=0 for El�k�=z±. These
conditions give

d± =
2n + �1 ± 1�/2

�2me
*�z± − El�0��

�� , �9�

with n integer. Replacing d=d± in Eq. �8� we obtain the real
solutions for z±, which correspond to BIC. The appearance of
BIC is essentially due to Fabry-Perot destructive interference
between the wave functions escaping from each dot. This
interference can only occur in a one-dimensional continuum
�the quantum wire�.

As shown in Ref. �12�, BIC appear even for large d±.
Thus, in principle, the wire connecting the dots can be rela-
tively long and still allow BIC. Note that d± is a nonlinear
function of n. Strictly speaking the distances d± are not regu-
larly spaced.

Computational results. We have computed the energy
eigenstates for the lowest propagating mode in the double-
dot waveguide as a function of energy and the distance be-
tween the two dots using the boundary integral method
�11,15�. The eigenstates are built out of local propagating
and evanescent modes in the leads and dots and are com-
posed of incoming, �−�x ,y�, and outgoing, �+�x ,y�, states:

��x,y� = �−�x,y� + S�E��+�x,y� , �10�

where the scattering amplitude S�E� is composed of reflec-
tion and transmission coefficients. As unit of length we take
the width of the lead, Wl=1, corresponding to 100 Å. As a

FIG. 1. Quantum-dot pair.

FIG. 2. Transmission probability �T�2 versus energy E for the double-dot waveguide with �a� d=5.25, �b� d=5.5, �c� d=5.60, �d�
d=5.70, and �e� d=5.90. In this and the following figures the unit of length is 100Å, and we have Wd=2,Ld=2, and Wl=1. The dashed line
in �c� is the transmission probability for the single-dot waveguide.
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specific example, in this unit, we set the width and length of
each dot to Wd=2 and Ld=2, respectively. These parameters
satisfy the conditions of validity of the theoretical model.

We have computed the transmission probability �T�2 for
the lowest propagating mode as a function of energy for the
double-dot waveguide in Fig. 2. As we vary the distance
between the two dots, the transmission profiles change near
the resonance energy region Ed

0=0.25 eV. This resonance
corresponds to the energy of the m0=2 and n0=3 cavity
mode in either dot. For the chosen parameters, this mode
fulfills the condition El�0,1��Ed

0�El�0,2� used in the the-
oretical analysis.

As shown in Figs. 2�b� and 2�d�, there are sharp peaks in
the transmission profiles on either side of the resonance en-
ergy region. In Fig. 2�c� we see a broad transmission profile
with d=5.60. For comparison, the transmission probability
for the single-dot waveguide is shown in Fig. 2�c� as a dotted
line. The transmission zero profile shows a wider dip for the
double-dot waveguide as compared with that of the single-
dot waveguide. We will see later that BIC is formed when
d=5.60, as well as at other values d that are nearly regularly
spaced. These features are associated with the presence of
two poles in the complex energy plane, which affect the dy-
namics of the electron in the double-dot waveguide.

The transmission zeros in Fig. 2 are associated with the
poles of T�E� in the complex energy plane. The transmission
amplitude in the complex energy plane has a branch cut start-
ing from the lower edge of the continuum and extending
along the positive-energy axis and has poles at energies z
=	− i
. These poles give rise to the transmission zeros on
the positive real axis �11,16�.

The locations of the poles in the complex energy plane for
the double-dot waveguide are shown in Fig. 3. As we in-

crease the distance between the two dots, the pole located on
the right-hand side in Fig. 3�a� approaches the real axis. The
pole disappears into the real axis and produces a zero value
of 
 at the distance, d=5.60 in Fig. 3�c�. This implies the
formation of a BIC with infinite lifetime. The pole on the
left-hand side in Fig. 3�a� moves away from the real axis and
attains a large decay rate 
, accordingly. As the distance
between the dots is further increased, the pole on the real
axis in Fig. 3�c� emerges out of the transmission zero and
recedes from the real axis �Fig. 3�d��. If we continue to in-
crease d, the pole on the right-hand side in Fig. 3�e� ap-
proaches the real axis and makes a transit through the trans-
mission zero at d=6.28 �not shown�.

The wave functions inside the two dots associated with
the right-hand-side and left-hand-side poles in Fig. 3�a� are,
respectively, symmetric and antisymmetric with respect to
cavity exchange. These wave functions are close to the sym-
metric and antisymmetric combinations of the eigenstates of
the two closed dots with m0=2 and n0=3,

�±�x,y� =
1
�2

�sin�2��x − x1�/Ld�cos�3�y/Wd��1

± sin�2��x − x2�/Ld�cos�3�y/Wd��2� , �11�

where �i=1 inside dot i and �i=0 outside. Equation �11�
corresponds to Eq. �7�. The wave functions associated with
each complex pole keep their symmetry or antisymmetry as
the poles migrate throughout the complex energy plane, as
we vary the distance between the two dots. The BIC appear-
ing at d=5.6 is symmetric and at d=6.28 antisymmetric.

BIC reappear in a nearly periodic fashion as the distance
between the two dots is varied �see Table I�. This agrees with
the existence of real solutions of Eq. �8� with Eq. �9� for
different value of n. For example, the solution of Eq. �8� for
n=4 and n=5 give d+=6 and d−=6.67, respectively. The
difference between the theoretical and computational values
of d in Table I is likely due to the cutoff of j�1 modes in the
theoretical model �14�. However, the theoretical spacing be-
tween consecutive distances is in good agreement with the
computational results. We have found, computationally, BIC
for distances of up to d�50, which means that these states
may be quite delocalized.

In Fig. 3 each of the poles with either symmetric or anti-
symmetric identity makes a counterclockwise circulation that
passes through the transmission zero on the real axis as vary
the distance between dots. It has been known that the double
or multiple poles induced by a laser in an atom coalesce to
form an exceptional point or repel each other to form an
avoided crossing �17–19�. In contrast, the poles of the
double-dot waveguide make a circular motion and do not
approach or repel each other.

The survival probabilities of an electron placed in the
waveguide dots can be calculated using the scattering states

FIG. 3. Transmission amplitude T�E� in the complex energy
plane E=ER+ iEI for the double-dot waveguide with �a� d=5.25, �b�
d=5.5, �c� d=5.60, �d� d=5.70, and �e� d=5.90. The transmission
amplitude in the complex energy plane for the single-dot waveguide
is in �f�. The dark regions indicate the positions of the poles, and the
bright regions indicate the position of the transmission zero.

TABLE I. Computational �c� and theoretical �t� values of the interdot distance at which BIC appear.

d�c� 2.30 2.96 3.61 4.28 4.95 5.60 6.28 ¯ 47.9 48.5 49.2

d�t� 2.67 3.33 4.00 4.67 5.33 6.00 6.67 ¯ 48.7 49.3 50.0
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of the double-dot waveguide. The survival probability can be
written as P��t�= �A��t��2, where A��t� is the survival ampli-
tude,

A��t� = ���e−iĤt/���� = 
0

�

dE����E��2e−iEt/�. �12�

We choose as initial state ���, the symmetric or antisymmet-
ric combinations of the eigenstates of the two closed dots in
Eq. �11�, with no probability amplitude outside the dots. In
order to solve Eq. �12� numerically we discretize the energy
eigenstates �E� residing in the continuum. In Fig. 4, we plot
the survival probability P�t�= �A�t��2 versus time t for the
states prepared symmetrically or antisymmetrically inside
the two dots at t=0. The distances between the two dots are
d=5.60 and d=6.28 for Figs. 4�a� and 4�b�, respectively.

With this arrangement, one of the complex poles has a
vanishing imaginary part 
→0 and gives rise to an infinite
lifetime. The results show that the symmetric �antisymmet-

ric� state does not decay over time for the cases with
d=5.60 �6.28�. On the other hand, the antisymmetric
�symmetric� state decays quickly. The dotted line in
Fig. 4 shows the survival probability of the state,
�=sin�2�x /Ld�cos�3�y /Wd�, in the single-dot waveguide.

In conclusion, we have proved that there can be BIC in
double-dot electron waveguides with specially arranged ge-
ometry. We could make the electron flow or get trapped in-
side the dots by controlling the size of one of the dots. This
feature might be useful in a circuit device.

In both our theoretical and numerical analysis we have
not discussed the Coulomb repulsion between electrons, be-
cause we considered single-electron states. Therefore we
have no intradot or interdot Coulomb repulsion. One could
consider electron pairs with opposite spins, though, with one
electron placed within each dot. In this case BIC with large
interdot distances as described in this paper could still ap-
pear, because for large interdot separations the Coulomb re-
pulsion may be negligible. It is interesting to investigate the
possibility of using such BIC to form delocalized, entangled
states.

The existence of BIC may be verified experimentally us-
ing actual electron waveguides. Alternative experimental set-
ups are electromagnetic waveguides, which are described by
a similar model, and superlattices with two impurities �20�.
Three-dimensional electron waveguides analogous to Fig. 1
may be constructed using nanotubes �10�.

We have become aware that BIC in electron waveguides
with a finite-size attractive impurity has been reported in
Ref. �21�
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FIG. 4. The survival probability P�t�= �A�t��2 versus time t for
the states prepared symmetrically or antisymmetrically inside the
two dots at t=0. The distances between the two dots are �a�
d=5.60 and �b� d=6.28. The dotted line shows the survival prob-
ability of a state in the single-dot waveguide in �a� and �b�. The
solid line displays the survival probability of a state prepared sym-
metrically, and the dashed line displays the survival probability of a
state prepared antisymmetrically.
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