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PHYSICAL REVIEW A VOLUME 42, NUMBER 3 1 AUGUST 1990

Differential, partial cross sections for electron excitation of the sodium 3P state

Xianming L. Han, * Gregory W. Schinn, ' and Alan Gallagher
Joint Institute for Laboratory Astrophysics, National Institute ofStandards and Technology

and Uniuersity of Colorado, Boulder, Colorado 80309-0440
(Received 2 January 1990)

Using a powerful laser-based experimental method, the cross section for electron excitation of
Na(3S) atoms to the Na(3P) state has been decomposed into partial components with respect to
changes in the spin and angular momentum of the atomic electron, and these partial cross sections
are further reduced to their differential character with respect to the electron scattering angle. Par-
tial, differential cross sections are reported for electron collision energies from threshold 2. 1 to 3.6
eV, and compared to available calculations.

I. INTRODUCTION

Near-threshold electron excitation of atoms plays an
important role in many contexts, including fields as
diverse as stellar and planetary atmospheres, discharge
lamps and lasers, and fusion reactors. Proper under-
standing of this physical process requires detailed
knowledge of the electron-atom collision dynamics and
complex calculations, which must include spin-exchange
and direct scattering. Here we report a highly detailed
experimental study of such an excitation, where the
changes in atomic mL and m, angular-momentum projec-
tions are measured as a function of electron-scattering
angle. Changes in m, are most significant for near-
threshold excitation energies, and for low-Z atoms they
arise almost exclusively from exchange effects. ' The
present results provide a very detailed test of the collision
dynamics in this interesting energy region, as well as pro-
viding an overview of the general characteristics of near-
threshold excitation.

The concept of the "complete" scattering experiment
was articulated by Bederson in 1969. He described how
one could measure, in principle, the magnitudes and
phases of a finite number of complex scattering ampli-
tudes in order to completely describe any elastic or in-
elastic electron-atom collision process. In particular, the
excitation of the first resonance level (3S-3P) of sodium
in the near-threshold energy region can be completely
characterized by the measurement of seven parameters
(corresponding to four complex amplitudes less an overall
phase) at each collision energy and electron scattering an-
gle.

The electron-collisionally-induced Na 3S-3P transition
has been very frequently studied, and various experi-
ments have measured partial sets of these parameters,
normally for differential electron scattering. In the most
definitive experiment to date, the superelastic-scattering,
polarized-electron technique of McClelland et al. has
yielded several combinations of these parameters at
several electron-scattering angles for several collision en-
ergies between 1.3, and 12.8 ev above threshold.

We report here the results of an experiment which

measures four of these seven parameters, and three as a
function of electron scattering angle. Specifically, we
have measured the dependence of the sodium 3S-3P exci-
tation cross section on changes in m, and mL of the
atomic electron. Preliminary angle-integrated results for
these four partial cross sections have already been pub-
lished. Improvements in those results as well as experi-
mental details and the angularly differential character of
the partial cross sections are reported here. The experi-
mental method used to obtain this information is com-
pletely new to the field of electron scattering. Its
strengths and problems are discussed below in the con-
text of describing the present experiment.

II. EXPERIMENTAL PRINCIPLE

The essence of the experimental method has been de-
scribed in Refs. 5 —7, and we will only reiterate it briefly
here. Atoms in a magnetic field are initially prepared in a
pure m,

'
level of the 3S,i2 state by optical pumping, and

some are then electron excited to the 3P3/2(mJ) levels.
The relative populations in these four Zeeman-split levels
are measured by tuning through four spectrally resolved
3P3/2(mJ)-5S, /2 transitions with a cw dye laser (desig-
nated v2), and detecting the 4P 3S, uv cascade -fluores-
cence from the 5S state. This method and a typical v2-

scan signal in the 218-G magnetic field are shown in Fig.
1. The area under each peak is proportional to the popu-
lation of the corresponding 3P3/2(m J) level; the propor-
tionality constants will be discussed in more detail below.
These 3P, /2(mJ) populations are in turn proportional to
the 3S, /2 ( m,

'
) ~ 3P3/p ( m J ) (angle-integrated) partial

cross sections, which can be reduced to the ratios of the
3S(m,')~3P(m„mt ) partial cross sections. When these
ratios are normalized to the previously measured total ex-
citation cross section, the partial cross sections are ob-
tained. The method of measuring dependences on elec-
tron scattering angle is described in the next paragraph.

When an electron scatters from a Na atom, it transfers
momentum to the atom. Figure 2 illustrates how the out-
going direction (0) of the inelastically scattered electron
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width, so the angular resolution is limited. As an exam-
ple, inelastic 3S-3P excitation at 1 eV above threshold
leads to a recoil red shift of 18 MHz for 6I=O' and 66
MHz for 0=180'. This 48-MHz spread compares to an
experimental linewidth of -25 MHz. However, the ex-
perimental resolution of response function is accurately
measured by optically exciting 3S-3P, so detailed angular
information is obtained by a "deconvolution" procedure,
in spite of this low ratio of recoil shift to experimental
line width.
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FIG. 1. Na energy levels and transitions involved in the ex-

periment. Also a typical electron-excited v& spectrum in the
218-G magnetic field is shown at the top of the figure.

is related to the recoil velocity of the atom. The atornic-
recoil velocity component in the direction the vz probe
laser produces a Doppler shift of each 3P3&z( mJ )-5S(m,")
transition, so that the angular dependence of each partial
cross section appears in the distribution of Doppler shifts
for the four mz transitions. The vz laser beam counter-
propagates with the electron beam, so that a Doppler
recoil shift proportional to cos6) is observed. The atom-
electron mass ratio is very large, so this is a relatively
small Doppler spread. Its observation is partially ob-

III. EXPERIMENTAL DETAILS

A cross section of the experimental arrangement is
shown in Fig. 3(a). A beam of sodium atoms deffuses
from a recirculating oven, which is in a differentially
pumped chamber. The beam is collimated to a thickness
of 0.6 mm in the B (or z) direction and a width of 2.2 mm

by a liquid-nitrogen-cooled slit, producing a residual
Doppler full width at half maximum (FWHM) of =10
MHz. The atoms then enter a partially, magnetically
shielded region, where the residual, z-directed magnetic-
field strength is —5 G. Here they are state selected into
the m,'= —,', mr==,' sublevel of the 3S state by optical
pumping with a circularly polarized laser beam (designat-
ed v&), and they remain in this sublevel as the atomic
beam passes into the -220-G field.

In the collision region some atoms are excited to the
3P3/p state by the z-propagating electron beam, and some
of these excited atoms are further excited to the 5S»z
state before spontaneous emission by the overlapping,
counterpropagating, vz laser beam. (Electron and laser
beams are -2 mm diameter. ) Approximately 20%%uo of the
330-nm, 4P-cascade fluorescence from 5S»z is collected
by a spherical mirror and fused-silica lens, and detected
by a photomultiplier [Fig. 3(b)]. Glass filters are used to
block the (590-nm) 3P fiuorescence and transmit the
(330-nm) 4P fiuorescence. The photoelectron pulses are
collected by a data-acquisition system, which in turn is
interfaced to a microcomputer which processes the data.

For the partial-cross-section data a vz laser power of
typically —100 mW was used; on resonance this ) 90%%uo

saturated the 3P3&z(MJ )-5S(Ms', MI") transition and
broadened each signal peak (Fig. 1) by 10—20 MHz. For
the differential cross-section data a lower power was used
and the instrumental linewidth of -25 MHz was almost
all due to the residual Doppler width (12 MHz) plus nat-
ural 3P 5S transition line-width (13 MHz). The typical
peak photoelectron signal rate was —10 /s in the former
case and 4 X 10 /s in the latter.

A. Spin alignment

FIG. 2. Electron momentum diagram. The electron momen-
tum change in the laser-beam direction, P, —Pf cosO, is
transferred to the atom and detected as atomic-recoil Doppler
shift.

In order to pump nearly all 3S»z atoms into the
(F', mF ) =(3,3) or equivalently the (m,', MI ) =( —,', —,')
state, both ground-state hyperfine states are pumped us-

ing sidebands of a phase modulated v, laser beam. This is
done by tuning the laser to the midpoint between the
3S»~ F'=1 and 2 to 3P»z I' =2 transitions and passing
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the beam though a LiTa03 crystal in a split-ring rf cavi-

ty that it is modulated at -886 MHz, corresponding to
half of the 3S,&2 (zero-field) hyperfine splitting. To
prevent drift of the v, laser frequency, it is servolocked to
the crossover resonance of an external Na saturated-
absorption cell.

The degree of state selection was &92% into the

3Si&2(m,'= —,', mz =
—,') sublevel, and & 96% for

3S,&z(m, =
—,') spin selection, for the typical -30 mW

(o) ~ POLE PIECES~
= B

power at each hyperfine resonant frequency. This
optical-pumping efficiency was measured in the interac-
tion chamber by scanning the v2 laser across the
3S) ~2-3P3/2 and 3S

~ &2-3P, &z transitions with the v,
(optical-pumping) laser blocked and unblocked, and
detecting the resultant 3P Auorescence. The residual
population in each nearly emptied sublevel was obtained
from the intensity change of the associated peak, i.e.,
since —, of the ground state is initially in each 3S-state
sublevel, the intensity ratio with and without optical-
pumping yields the residual population in each of the
seven partially emptied sublevels. Example spectra and
dependences on experimental parameters are discussed
elsewhere. ' '
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FIG. 3. Cross section of the apparatus (a) in the plane of the
Na and electron beams and (b) in the plane of the detection op-
tics and electron beams. The latter includes details of the elec-
tron gun. A fine Cu screen shielded the interaction region from
possible charging of the insulating mirror surface.

B. Electron gun

A detailed cross-sectional view of the magnetically
confined electron gum used in this experiment is shown in
Fig. 3(b). An indirectly heated, —1300-K alkaline-earth-
oxide cathode, produces a beam thermal energy width of
-0.28 eV. The plates in front of the cathode are used to
draw the electrons out from the cathode region with
minimal transverse electric fields. Their 2.5-mm-diam
apertures also define the beam size. These are followed
by an element with tapered aperture to minimize lensing
action as the electrons enter the larger bore of the in-
teraction chamber.

The electron-energy width of our electron beam was in-
directly checked by measuring the threshold shape of the
3P-excitation cross section, which is the 3P polarization-
corrected fluorescence in the absence of any laser beams.
The present observed cross section was in excellent agree-
ment with that observed in Refs. 10 and 11, indicating
equivalent electron-beam energy spreads. The same type
of cathode was used in all three experiments, and the
beam-energy spreads were measured in Refs. 10 and 11
and found to be in agreement with the thermal spread.
Thus, we believe that holds here as well. The effect of
this energy spread on the analysis and results will be dis-
cussed in Sec. V.

The electron energy was established from the 3S-3P
and 3S-4P excitation thresholds and the mean electron
energy was varied by changing the voltage on the cathode
V~. The absolute energy in the interaction chamber
sometimes varied by -0. 1 eV at fixed Vz over a period
of a few hours. The interaction chamber was heated to
—150'C to avoid Na buildup on its surfaces, so cathode-
oxide changes and Ba coating of the nearby gun elements
are the most likely causes for this drift. In order to deter-
mine the actual electron energy, the 3S-3P excitation
function as a function of Vz was measured at frequent in-
tervals between v2 scans.

A transverse-field electron collector was used to moni-
tor the electron-gun current and prevent a return current
from reentering the interaction chamber [Fig. 3(b)]. Here
a strong transverse electric field produced an E XB drift
of the electron's guiding center, and drove the electrons
into the wall of the collector whose net current was mea-
sured by an electrometer.
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C. Electron-beam spiraling

Electron spiraling occurs when the electrons acquire a
velocity transverse to the confining magnetic field. If this
occurs here the collision direction is not parallel to the
quantization axis and the measured mL dependences of
the partial cross sections become mixed. Causes of trans-
verse velocity are the thermal velocity of electrons emit-
ted from the cathode and transverse electric fields arising
from space charge, from nonuniform surface potentials
due to alkaline-earth coatings on the electrodes, charging
effects caused by oxide buildup on the electrodes, and
lensing action arising from the finite-size holes of the ac-
celerating plates causing deviations from equipotential
planes. ' Detailed consideration of these effects for our
conditions, including electron-orbit calculations, are
presented elsewhere. These predict that typically Qo
and Qo appear -2% too small, Q, appears -9% too
large, and Q,

' -20% too large.
The minimum degree of spiraling should occur when

the electrons are drawn out with an approximately uni-
form electric field. This was confirmed by monitoring the
near-threshold polarization of the fluorescence from the
electron-excited 3P states. (This is —35% in the 218-6
field. ) Minimum spiraling corresponds to a maximum in
the ratio of Aml=0 to AmL =1 excitation, and hence a
maximum in the observed polarization. By varying the
electron-gun voltages, a broad maximum in the polariza-
tion was found when the electrons were weakly accelerat-
ed to A 3, which was typically —8 V above the cathode
potential, and then decelerated from this -6-eV energy
to 2 —6 eV used in the collision region. As described fur-
ther below, our measured ratio of mL cross sections was
very close to that reported in Ref. 12, where an electro-
statically confined electron beam free of spiraling was
used.

recirculation, it was operated for many hundreds of hours
on its initial 30-g sodium charge.

The Na density in the interaction chamber was con-
trolled to avoid radiation-trapping induced error, due to
radiation from an electron-excited 3P3/2(MJ) state excit-
ing another atom to a different 3P3/2(mJ) level. The
essentially effusive atomic beam is Doppler broadened
along its axis, but due to its collimation the self-
absorption cross section k (v) is much larger in the trans-
verse directions. However k(v) is lowered and very state
specific due to the 3P- and 3S-state Zeeman splittings in
the 218-G field (see Ref. 6). Since the mj= ——', electron
excitation cross section is only a few percent of the total
it is particularly sensitive to radiation trapping. Thus, it
is important to note that the dipole selection rule
prevents radiative excitation of this state from the pri-
mary beam component, the 3S(m,'= —,') state. After tak-

ing into account the radiation-angle-dependent reabsorp-
tion probability of the beam and the frequencies and po-
larization properties of the photons emitted in various de-
cays, we conclude that radiation trapping should not be
significant for the n =3X10' cm beam density nor-
mally used in the experiment. To confirm this, a limited
number of cross section scans were taken with approxi-
mately twice the above sodium density; the results were
found to be in good agreement with the lower-density re-
sults. (The density is known from the integrated absorp-
tion in the optical-pumping region. )

The main chamber is pumped with an ion pump and
fugitive Na vapor is pumped with a large (30X40 cm )

copper sheet connected to a liquid-nitrogen-cooled cold
finger, while the oven chamber is pumped by a turbo
molecular pump. Typical operating background-gas
pressures are (1—5) X 10 Torr.

E. Lasers

D. Oven and beam density

The sodium atomic beam was produced by a recirculat-
ing oven, whose design is adapted from that of McClel-
land, Kelley, and Celotta, based on a private communi-
cation. In normal operation, the water-cooled copper re-
circulating lid collects most of the sodium emanating
from the 0.25-mm-diam orifice. A beam flag above the
lid controls the passage of the beam into the downstream
part of the apparatus. A water-cooled plug of solid sodi-
um prevents the molten sodium in the oven reservoir
from being pushed out through the recirculation tube by
the Na vapor pressure. Following the completion of an
experimental run the cooling water if turned off, then the
plug and recirculation lid are heated to -200 C, well
above the melting point of sodium. The collected alkali
metal then flows back into the oven.

This oven was designed to be used under either super-
sonic or effusive operating conditions. However, to avoid
density-dependent radiation-trapping effects, while main-
taining an approximately constant beam flux over the
many hours of data collection, the oven was run as an
effusive source for the data reported here. With periodic

Two cw dye lasers, each with 1 —2-MHz linewidth and
—100-mW total power were used for the 589-nm optical
pumping and 616-nm, v2 excitation. As already noted,
the optical-pumping laser was frequency locked using a
Na saturated-absorption cell signal, and the v2 laser was
scanned. For the partial (angle-integrated) cross section
data an external confocal reference cavity with a 250-
MHz free spectral range was used to monitor the lineari-
ty of the v2-laser scan. The measured deviations from
linearity over the -2 GHz scans were typically less than
10 MHz, and were largely taken into account in the data
reduction. For the differential cross section data the
-200-MHz region around each peak was individually
scanned, using a digital-frequency control method that
attained —1-MHz linearity and accuracy. ' Lasers
powers were controlled or monitored during all data ac-
cumulation.

IV. PARTIAL CROSS SECTIONS
FOR m, - AND mL -CHANGING COLLISIONS

Angle-integrated partial cross section data were taken
at nine electron-beam average energies E from 2.28 to 6
eV. Data equivalent to that in Fig. 1 were first reduced
to the area under each of the four peaks. The ratios of
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these areas were then reduced to the MJ dependence of
the 3S(Ms =

—,
'

) ~3P3/p(MJ) partial cross sections, using

the power-dependent sensitivity factors described in Ap-
pendix A and corrections for incomplete optical pump-
ing. These three MJ-dependent ratios were then reducedI~, Ito three ratios of Q~~

' partial cross sections using the
L

Clebsch-Gordan coeScient relationships shown in Fig. 1

[e.g. , Q(MJ= —
—,')=(2Qo+Q, )/3]. Here the four par-

tial cross sections for m, change Am, and mI change Aml
/bm f p p 1are denoted by Q~~

'
~

=Qo, Q„Qo,and Q, and we

make this reduction from (J,m I ) to (mrm, ) because the
latter are more directly connected to the electron-
collision process and calculations. The remaining param-
eters not determined in this experiment are the three rela-
tive phases between these four partial cross sections.

The total cross section Qr for 3S-3P, /z and -3P3/2 ex-
citation is the sum of a11 possible Am, - and AmL-
changing cross sections:

QT=Qo+Qo+2Qi+2QI . (1)

/am, /

The Q ~a
' ratios obtained from the data by the
L

above-described procedure are put on an absolute basis
using Eq. (1). Since the shape of our measured total exci-
tation cross section as a function of energy is in excellent
agreement with the results of previous experiments, ' "
we are able to assign to it absolute cross-section values,

/am, /

which we use to normalize the Q ~a
'

~

ratios.
L

jam, )

All four Q z
' cross sections were measured for ener-
L

gies below the (4.12 eV) 5S threshold, but the Q,
' cross

section was not obtained from the E &4. 1 eV data. The
reason is that the v2 laser beam transfers population
equally back and forth between the 3P3/2 ( m 1) and
5S(m, ) levels, and as a result each peak signal is propor-
tional to the difference between electron excitation of
these 3P and 5S sublevels. The 3P excitation cross sec-
tion is -50 times larger than to 5S so this produces a
very minor overall correction (-2% for Qo and —5%
for Q, and Qo). But the Q', component is only a few per-
cent of the total 3P cross section, so this has a very major
effect on the mz= ——', or Q', components for energies
above the 5S threshold. In fact, for E &4.5 eV the
5S(m,"=—

—,') cross section exceeds the 3P(m, = —
—,')

cross section and we actually observe a decrease in 4P
fluorescence as the v2 laser is scanned across this transi-
tion.

In order to correct the data for the incomplete optical
pumping, the 3S, 3P, and 5S hyperfine eigenstates and en-
ergies in the 218-G magnetic field were calculated by di-
agonalization of the Hamiltonian matrix. The propor-
tions of each (m„mrj component in each of the partially
emptied, intermediate-coupled 3S,&z sublevels were cal-
culated, and combined with the measured residual popu-

Jbm Jlations and the measured Q~~
' ratios to iteratively

correct the measured areas of the four v2-scan peaks.
Since the 3S-state m, alignment was typically 95—98%,
this is a few percent correction, except for obtaining Q,
from the mJ= ——', peak where it is -50%%ui correction.

t0 2

XX

I0 I

0(-i

cuO0

Qi

20 25 3.0 3 5 4 0 5 0 6.0
ELECTRON ENERGY (eV)

/bm fFIG. 4. Partial cross sections Q~~
'

~

for 3S~3P excitation
L

with change
~
b m, ~

and hmL
~

in the atomic electron vs electron
energy. Note that the energy scale is contracted from 4—6 eV.
Solid lines are drawn between the calculated points of Ref. 14.

thorn )

The 4S cascade corrected Q~, based on the QI, ' calculated in
Ref. 15, are shown as broken circles above 3.2 eV.

These data, after corrections for v2-laser power depen-
dence and normalization to the total 3S-3P cross section,
are presented in Fig. 4.

Five measurements were taken at 3.0 eV as part of the
power-dependence calibration discussed in the Appendix.
The scatter in these points, shown in Fig. 4, is not corre-
lated with the v, -laser power, indicating that the relative

gbm, j

values of the Q z
*

~

cross sections do not depend sys-
L

tematically on laser power. An estimate of random un-
certainties, bassed on power-dependence measurements
at 3.0 eV, ranges from +2% for the larger Qo to +10%
for the smaller Q', .

V. DIFFERENTIAL PARTIAL CROSS SECTIONS

As already noted, each of the four m J peaks of the v2
spectrum (Fig. 1) is shifted and spread out due to the
electron momentum change and resulting atomic recoil.
A 3S~3P excitation accompanied by electron scattering
into an angle 0 produces a net v2 frequency shift of
(P; PfcosH)MA, w—here P, and. Pf are the electron
momentum before and after the collision, M is the atomic
mass, and k the vz wavelength (see Fig. 2). Since
d v2 ~ d(cosH), each recoil spectrum is equivalent to
Q (cosH) for that particular

~
b, mL ~

and
~
b, m, ~

partial
component of the excitation cross section. In the present
Na experiment this recoil frequency shift is 23 MHz
(QE, —"(/ EfcosH), where E, =Ef+2. 1 eV is the elec-
tron collision energy in eV. For the present measure-
ments, the final electron energy Ef varied from 0.5 to 1.5
eV, and the Doppler-shift difference between 0' and 180
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electron scattering varied from 33 to 56 MHz. In com-
parison, the experimental linewidth without any recoil
was -25 MHz, due to residual beam Doppler spread,
plus natural and power broadening of the 3P-5S transi-
tion. Thus, to obtain meaningful angular resolution, it is
essential to reduce the instrumental smearing of the
recoil distribution. The basic idea of the method chosen
for this will first be briefly described, then details will be
given.

The atomic-recoil Doppler spectrum for each mJ line
was measured relative to its unshifted position by alter-
nately electron and optically exciting the 3P3/p state. An
example of such data, for the mJ= —', component, is
shown in Fig. 5. If the instrumental width were negligi-
ble and complete optical pumping were achieved, the
electron-excitation signal S(b,v2) in Fig. 5 would equal
Q(x), where Av2=(23 MHz) ( t/E; QEf—x), Ave is
measured from the optical-excitation signal, and
x =cos8. The Q(x) corresponding to this signal, ob-
tained from the analysis described below, is labeled Q in
Fig. 5. This Q (b,v&) is bounded by Eve= 18 and 62 MHz
relative to the "no-recoil" center of the optical-excitation
peak, corresponding to x =+ 1 or —1 or 0=0' and 180'.

The first step to reducing the data to Q(x) is to correct
for incomplete optical pumping. Most of each signal in
Fig. 5 is due to v2 excitation from the m J =—'„Ml=—,'sub-
level of the 3P3/2 state, since the Na beam was initially
highly optically pumped into the m, =

—,', mr =
—,
' sublevel

of 3S,/2 and electron excitation does not change m~.
However, there is a small contribution to each signal in
this figure, due to mJ =—3, miA —', sublevels that result
from the incomplete optical pumping. The size and posi-
tions of these small (& 5') contributions have been cal-
culated from knowledge of the residual 3S,/2 sublevel
populations and the energies of the 3P»2 and 5S»2 sub-
levels. In the optical-excitation case, intermediate-
coupling radiative transition probabilities were used, and

200
e= l80

90' NO RECOIL
Oo
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I 50
C
D
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FIG. 5. 330-nrn fluorescence vs v& for optically excited and
(3.1-eV) electron-excited 3P3/2 state atoms. The v2 transition
from the 3P3/2 m J 3/2 state is shown. The dashed line is the
contribution of undesired 3S1/&(F', mF) levels to the optically
excited signal, due to incomplete optical pumping. The line la-
beled Q is the recoil spectrum or Q(cos01, as it would appear in
the absence of instrumental broadening.

in the electron case the relative sizes of the
3S,~2(mJ)~3P3/2(m J) cross sections from the previous
section (Fig. 4) were used to establish the relative sizes of
different contributions. These mzW —, contributions to the
optical-excitation signal are shown as a dashed line in
Fig. 5; each contribution has been given the same Av2
shape as the primary signal for their mJ sublevel. These
are subtracted from the experimental signals to obtain
the single-component S ( b v2) and I ( b, vz).

The imperfect optical-pumping correction is small for
the peaks labeled mJ 2 2

and —
—,
' in Fig. 1, and they

are all analyzed as described in the previous paragraph.
However, for the peak labeled mJ= ——', the normal
mJ= ——'„mr= —,

' component results from the very small
Q', partial cross section (Fig. 4), whereas the overlapping
contributions due to incomplete optical pumping include
contributions from the other much larger Q,~. Thus, in
addition to being the smallest peak, major corrections
would be needed to analyze this peak; it has not been ana-
lyzed in this work.

The next step in the data reduction is to remove the
effect of instrumental broadening, insofar as is possible.
The actual experimental electron-excitation signal S (b,vz)
is a convolution of Q(hv2) with the instrument function
I(hv2 hv2), wh—ere the optical-excitation signal is the in-

strument function

S(bv~)= f Q(bv2)I(bv~ Ave)d(bv—2) . (2)

A formally simple way to invert Eq. (2) to obtain
Q(hv2) from the data, after removal of incomplete-
optical-pumping contributions, would be to use Fourier
deconvolution. However, this does not work very well
here because the Q(bv2) function in Eq. (2) is finite
within the bv2=18 —62-MHz range and zero elsewhere.
To reproduce the resulting steps in Q(Ave) at these two
frequencies requires very high "frequency" Fourier com-
ponents, thereby accentuating experimental noise and
obscuring the results. Consequently, we have "inverted"
Eq. (2) by least-squares fitting to a parametrized Q(Ave)
that is zero outside the allowed range. We initially chose
Q(x)=QICIPI(x}, where Pt(x) are the Legendre polyno-
mials, and we obtain the constants CI by the least-squares
fitting. The sum was extended from l =0 to 1,„=2,3, 4,
etc. , and the resulting Q(x) convergence was noted. For
some mJ, Ef cases, where Q(x) was more or less evenly
distributed between x =+1, good convergence was ob-
tained in this way. But for some cases Q(x) is highly
peaked at small angles (x —1), and the Legendre expan-
sion then con verges poorly and oscillates rapidly at
x &0.5. We therefore added to the Q(x) Legendre ex-
pansion an exponential term, of amplitude A+ at x =1
and which exponentially decreases with decreasing x.
The width of the exponential function was chosen to
roughly match the forward peak obtained from the
Legendre expansion alone, but this was not critical to the
final Q (x) as the Legendre terms compensate for
moderate changes in the width of the exponential, i.e.,

I max

Q(x}=g CIP&(x)+ 3+exp[(x —1)/5] . (3)
1=0
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In a few mz-peak, Ef cases the Legendre expansion
alone also indicated a major backward peak; in these
cases the sign of x in the exponent was reversed to add a
backward-peaked exponential.

The next detail involves the instrument function used
in the least-squares fitting routine. The optical-excitation
signal was easily made large and relatively noise free, al-
lowing an analytic form to be accurately fitted to this
measured I(bv2 hv—z), after making minor corrections
for incomplete optical pumping. I(y) was well fitted by a
Voigt function, with comparable size Gaussian and
Lorentzian parts and slightly different parameters for
positive and negative y. This minor asymmetry was attri-
buted to slightly nonorthogonal atomic and laser-beam
directions.

Another small but important correction was to sub-
tract the overlapping wings of the different mJ peaks
(Fig. 1). Each peak was also scanned individually several
times and the data were averaged. To minimize power
broadening, the total laser power density was —8

mW/cm for the mJ=+ —,
' peak and —,

' of this for the
m J 2 peak, to adjust for the different probe-transition
strengths. Other details can be found in Ref. 6.

Differential cross-section data were taken at average
electron-collision energies of 2.6, 3.1, and 3.6 eV. (The
electron-beam FWHM is -0.28 eV.) In Fig. 6 we show
the shape of the three S(b,v2) signals at each energy, after
corrections for imperfect optical pumping and overlap-
ping wings. These signals are normalized here to equal
area and shifted to place hvz=0 at 0=90' or x =0. Con-
sidering Fig. 6(b) as an example, it is apparent that the
mj = —

—,
' peak is nearly symmetric about x =0 and wide-

ly spread, reflecting a Q(x) that must be relatively con-
stant between x = —1 and 1 (i.e., isotropic scattering). In
contrast, the mJ= —,

' peak is strongly weighted toward
small angles, indicating a Q(x) that is sharply peaked at
x =1. The mJ =

—,
' signal is similarly forward peaked, but

with a slower falloff toward x = —1, indicating a Q(0)
that also has a sharp x =1 peak but accompanied by
some larger-angle contributions. It is these differences
between S(hv2) shapes in Fig. 6(b) that produce the very
different Q(8} when we least-squares fit to Eq. (3) in Eq.
(2). The Q(x) that have resulted from this fitting are
shown in Fig. 6 below the S(b,vz); they are consistent
with this discussion. We will now give examples of how
these were obtained, choosing different mJ and E; for
each example.

In Fig. 7 we give an example of the fitting procedure
used to obtain the various Q(x) from the data. Here the
experimental signal Sz(Ave) for the mJ= —,', F., =3.1 eV
case is compared to two fitted signals S(hv2) in part (a}.
Residuals Sz(hv2) —S(bv2) are shown in part (b) for the
better fit in {a) and an improvement on this. Equation (3)
in Eq. (2), with the above relation between x and hv2 and
the L

„

indicated, has been used to least-squares fit the
parameters in Eq. (2) to obtain the fitted signals. The
Q(x) from these least-squares fits are shown in part (c)
and (d). These were obtained using the form of Q(x) in
Eq. (3), while truncating the Legendre expansion at L
and taking A+ =0 for Fig. 7(c) and including the ex-
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FIG. 6. 330-nm fluorescence signal vs hv2 for three electron
energies and three of the mJ peaks shown at the top of Fig. 1.
The solid line is for the mz =

2 peak, the short-dashed line for

the mJ=
~ peak, and the long-dashed line for the m&= —

2

peak. Here the signals have been shifted to place 90' scattering
at 0 detuning and normalized to equal areas. The differential
cross sections g(cosg) are plotted below, at the detuning where

they would appear in the absence of experimental broadening.
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ponential term in the fits of Fig. 7(d).
Note that as L,

„

increases in Fig. 7(c), the Q(x) be-
comes increasingly forward (x = 1) peaked, and they also
oscillate strongly at small-x values due to the oscillatory
character of Legendre polynomials. Further increasing
L,„causes these oscillations to yield nonphysical nega-
tive Q(x) between x = —1 and 0. This is an inadequacy
of the truncated Legendre expansion in trying to fit a
sharply peaked Q(x). Nonetheless, the overall pattern of
the various Q (x) in Fig. 7(c) is consistent for x (0.5, sug-
gesting that the "best" Q(x) passes smoothly through the
middle of their oscillations, then follows the L,„=4or 5
curves from x=0.5 to 1.0. This indication is tested in
Fig. 7(d), where the exponential term is included in the
Q (x) expansion with A+ fixed by the least-squares
fitting, and the Legendre terms no longer have to produce
the sharp forward peak. Note that the oscillations are
now considerably reduced for x &0.5, and the average
Q (x ~0.5) in Fig. 7(d) is very close to the average of the
Q(x ~0.5) in Fig. 7(c). Furthermore, the L,„=3curve
in Fig. 7(d) is very close to the L,„=5case in Fig. 7(c);
two very different fitting procedures converged to essen-
tially the same Q(x) and average residuals. Thus, we
conclude that the actual Q(x) for this mJ, Ef case is
effectively bounded by the "average" and L,„=3curves
in Fig. 7(d). Note, in Fig. 7(b), that large residuals occur
in the +60- to 80-MHz region for the optimum fits.
This is probably due to small imperfections in the
incomplete-optical-pumping corrections to I(b,v&). The
fact that the average fractional residuals,

L

0

II 60—
(3

45—

3.0—

AVERAGF OF L~(, „

L~a„, ov. res. = 3;

2, 0

l.5— I, I 03

-10 -05 0
cos (9

05 I 0

FIG. 7. Analysis of the mJ= —,', E, =3.1-eV data. (a) Corn-

parison of data, corrected for incomplete optical pumping, to a
least-squares fit using Eq. (3) in Eq. (2), in one case with L,„=2
and no exponential term, and in the other using L,„=1plus
the exponential ~ (b) Residuals between the data and least-
squares fits using the exponential term and L,„=1(dashed
line) and L,„=3(solid line). (c) Q(x) for the L,„shwno, from
least-square fits without the exponential term in Eq. (2). Aver-
age fractional residuals are also given for each case. (d) Same as
(c) but including the exponential term.

N 1/2

g [Sg(»„) S(bv„)] N 'S(0)
n=1

are only -0.6% in spite of this minor problem indicates
excellent convergence of this least-squares fitting.

We will now give a different example of the sensitivity
of the data fitting to the shape of Q(x), using mJ= —'„
E; =3.6 eV data. In Fig. 8 we show Sz(bv2) and two
S(b,v2), corresponding to the two Q (x) shown. The
solid-line Q(x) with the low-amplitude tail extending to
x = —1 was obtained by least-squares fitting to Eq. (3),
with L,„=3and the exponential included. The other,
dashed-line Q(x) is a pure exponential, with the same
Q(1) and a width that produces the same area. Thus, we
are comparing the optimally fitted Q(x) to a forward-
peaked exponential, in order to show the sensitivity of the
fit to the low amplitude, high-angle "tail." As seen in
Fig. 8 there is a very large difference in the fit, demon-
strating that the data are quite sensitive to such
differences in Q (x).

The third example, E; =2.6 eV and mj = —
—,', will be

used to describe a slightly modified reduction that was
used for the m J = —

—,
' data. Since Q ( m J =—', ) =Q t, the

analysis of the mJ= —', peak directly yields Q, (x). Also

Q ( m J =—,
'

) = —,
'

Q o + —,
' Q,' and Q,' /Qt =—0.01, so analysis

of the mJ= —
—,
' peak yields Qo(x). On the other hand,

Q(mJ= —
—,')= —2Qo+ —,'Q& and Qo/Q, =1 to 2 in the

2.6—3.6-eV range (Fig. 4). Since Q, (x) has already been
established from the mJ= —,

' analysis, we wish to obtain
Qo(x) from the mJ= —

—,
' peak. This has been done by



42 DIFFERENTIAL, PARTIAL CROSS SECTIONS FOR. . . 1253

N 3

N
I

O

2

C3

M

IJJ
O

N

0~ —IOO
1

e= ISO e=O.
6vz (MHz)

100

FIG. 8. Measured SE(bv2) and calculated S(bv2) signals for
the mJ = —', , E, =3.6 eV data. The two Qoo(x) shown yield the

S(b v, ) fits. The solid line Qoois the optimum exponential plus
Legendre-polynomial fit, while the dashed line Qoois a pure ex-

ponential.

be thought of as fixing the overall shape but not the fine
structure of Q(x}. In addition, the Qo(x) are less accu-
rate near x =1 since a much larger Q, (x) contribution
has been subtracted from the measured rn~= —

—,
' signal

(see Fig. 10).
The electron energy spread of -0.28 eV typically

causes —1-MHZ spread in the recoil frequency shift for
8=0' and -4-MHz spread for 8=180'. [Recall that
hv=(23 MHz) (QE; QE—Icos8). ] This corresponds
to a spread of cos8 of -0.02 at 8=0' and -0.08 at 180'.
The fitting procedure largely compensates for this rela-
tively minor spread in the data, particularly as the result-
ing Q do not change this rapidly. (Note, in Fig. 10, that
the narrowest forward peaked Q(cos8) has a half-width
of -0.08 and the narrowest backward-peaked case has
-0.14 half-width. ) Thus, the primary effect of the ener-

gy spread is to average over any rapid energy depen-
dences, just as in other collision experiments.

0.24
I

f I I
I

first subtracting S
~
(b,vz)/3 from S(b vz) ~, then

2

fitting the residual, T2SO(hvz), to obtain Qo(x). Here

S, (hvz) is —,
' of the measured S(b,vz) —3/z where the

J
factor of —,

' is due to the different Clebsch-Gordan
coefficients of the 3P3/z(112J)-5S(m, ) transitions. Figure
9 shows this procedure for the E, =2.6 eV data. The
Qc(x) least-squares fit to So(hvz) was done with and
without a backward-peaked exponential in Eq. (3) and
versus L,„.These Qo(x) versus L,„areshown in Fig.
9(b), and the final fit to So(bvz) is shown in Fig. 9(a).
Here we only present Q (x) obtained without the
backward-peaked exponential, showing that excellent
convergence was obtained even with this simpler expan-
sion. The Qc(x) in Fig. 10 is an average of the L,„=2,
3, and 4 curves in Fig. 9(b). For all E; a Q(x) fitted to
S(b,vz), /z showed forward and backward peaks,

whereas a Q(x) fitted to Sc(b,vz) showed no forward
peak, i.e., the forward peak is entirely due to the —,'Q,
part of the m J = —

—,
' cross section.

Q(x) and R values for the full array of L,„,with and
without the exponential term, are given in Ref. 6 for all

mJ, E; cases and are not repeated here. They systemati-
cally support the optimuum Q(x) shown in Figs. 6 and
10. These Q(x) are given by Eq. (3) with CI in place of
CI, where CI is obtained by averaging the CI from the
higher L,

„

fits. This averages through minor oscilla-
tions that varied randomly with L,„,and follows the
higher-L,

„

fits to the forward peak, as shown in the Fig.
7(c) example. The accuracy of these Q(x) shapes across
Ax differences of ~ 0.5 is believed to be good, perhaps
10%, whereas we cannot easily distinguish much larger
fluctuations with a small Ax period. For this reason it is
not feasible to assign a fractional uncertainty to these
Q (x); shape changes are highly correlated. For example,
areas under the forward peaks, relative to Q(x (0.5},are
probably of 10%%uo accuracy, whereas the steepness of the
forward-peak falloff is highly uncertain. The data should
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FIG. 9. Analysis of the mJ= ——', E; =2.6 eV data. (a) The

measured Sz( hv2) is labeled MJ 2
this results from

2QO+ 3Q, . The So, (hv~) contribution to the data is labeled

3
S

&
', this is subtracted from Sz ( b v2) to produce the So ( Av&)

curve labeled —,So. The "fit" or calculated So(hv2) corresponds

to any of the Qolx) shown in (b) other than the L,„=1 curve.
The Qo(x) in (b) are least-square fits using a backward-peaked
exponential plus Legendre polynomials for the L,„=1—3 case
and only Legendre polynomials for the L,„=4case. The frac-
tional residuals R are 1.42% for the L,„=1 case and 1.26%%uo for
the other cases.
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ergies, obtained from the data analysis. These are shown using
multiplicative factors for improved visibility, and the long-
dashed curve is proportional to Q =,/2(cos8).J

VI. DISCUSSION

A. Partial cross sections

IamL I amL I T 4s (4)

Our 3P-excitation data are compared to the calculation
of Moores and Norcross' in Fig. 4, but the data include
effects of cascading from higher-lying states for electron
energies above the respective thresholds. The first of
these states is 4S, with a threshold energy of 3.19 eV.
Electrons are excited from 3S(m,'= —,') to m,"=

—,
' or —

—,
'

~ '[~m,
( Oof the 4S state with cross sections Q4&

' =Q4s or Q4z,
respectively. Atoms in the 4S, m,

" state radiatively decay
to 3P(mL, m,") states with approximately equal probabili-
ty for mI =1,0, —1, the slight deviation from strict equal-
ity being due to the intermediate coupling in the magnet-

/am, /ic field. Therefore, the direct 3S 3P cross section QIz-*
—~b, m, ~

is related to the measured 3S 3P cross section Q I~
-'

I
by

L

15 /bm, [

Mitroy has calculated Q4s
' cross sections at several

energies between 3.26 and 4.1 eV, using a four-state
close-coupling approach. We have used these results to
make the cascade corrections shown in Fig. 4. At 3.55
eV, for instance, cascading from the 4S state contributes
0 4n. ao to Qo and Q &, and 0.3vrao to Qo and Q I. This is a
small fractional correction to all but Q I.

The effect of cascading from higher-lying states, partic-
ularly 3D at 3.62 eV, is less certain. Phelps and Lin'
have measured the total cross sections Q for electron ex-
citation of many states in sodium, but they did not mea-
sure the partial cross sections for excitation into the ml
and m, components. In the absence of such information,
we can estimate the cascade contributions by assuming
that the six (mL, m, ) levels of 3P are equally populated by
the radiative decay from 3D. At an energy of -4 eV,
Phelps and Lin report Q =4nao for 3S~3D excitation,

2 /Am, /

so this yields -0.7nao cascade into each QIa~' I. How-

ever, the measured total Q I is only -0.5nao at this ener-

gy, so the uncertainty in how the 3D excitation is distri-
buted among the 3D(ml, m, ) levels leads to a very major
uncertainty in directly excited Q', . The other 3S 3P par--
tial cross sections are much larger, so that this is only a
5% to 10% contribution.

Phelps and Lin also report 0.9~ao for the 3S-4P excita-
tion cross section at 4 eV. About —', of the 4P atoms de-

cay through the 4S state to 3P, while most of the
remainder contribute to the observed 330-nm fluores-
cence. The latter increases the overall background signal
and hence noise, but does not affect our signal shape as
the v2 laser is scanned. All initial alignment and most of
the spin orientation of the 4P state is lost in the 4P-4S-3P
cascade processes, so to a good approximation the mI
and m, levels of 3P are equally populated, and the correc-
tion will have the form of Eq. (4), with Q4s/3 replaced by

2Q4~ /9, or 0.27ra o at 4 eV.
Direct excitation of 5S for E )4. 1 eV leads to an in-

teresting experimental complication. When the v2 laser is
tuned to a 3P3/2(rnJ)-5S, /2(m, ") transition, the popula-
tion difference between these levels is decreased. Thus,
the difference between direct excitation of 3P3/2(Nz J) and
5S, /2(m, ") is observed. Again, the 3P3/p(m J p 2 p)

states all have electron-excitation cross sections much
greater than that for excitation to either of the 5S, /2(m, ")
states, so 5S electron excitation does not significantly
affect the experimentally determined Qo, Qo, and Q, .
However, the cross section for excitation to
3P3/p(mJ= —

—,'), proportional to QI, is somewhat less
than that for excitation of 5S, /z(m, "=—

—,') above 4. 1 eV,
and we actually observe a decrease in the observed 4P
Auorescence as the v2 laser is scanned across this transi-
tion (see Ref. 6).

Summarizing these cascade effects, they produce & 5%
correction to Qo, and (10% to Q&'& and Q, . However,
cascade corrections cannot be reliably made to Q', at
E & 3.6 eV, and the data in Fig. 4 must be considered as
a sum of direct plus unknown cascade contributions.
From E=3.2 —3.6 eV a cascade-corrected QI is shown,

based on Mitroy's calculation of Q4,
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FIG. 11. Reduced polarization, (Qo —Q, )/(Qo+ Q, ), includ-
ing the present measurement ( X), the measurement of Ref. 11
( ), and the calculation of Ref. 14 (0).

Previously published preliminary results from our ex-
periment were taken over a more restricted energy range
and not fully corrected for incomplete optical pumping.
Although the present data are more complete and reli-
able, the earlier data are consistent.

In Fig. 11, we plot the measured "reduced" polariza-
tion P =(Qo —Q, )/(Qo+Q, ), where Qo=Qo+Qo, and

Q, =Q &
+Q I. This represents the polarization that

would be observed if there were no fine or hyperfine in-
teractions, which partially depolarize the atoms between
the time of excitation and subsequent fluorescent decay. '

Also shown on the plot are the reduced polarization
values calculated by Moores and Norcross' (without cas-
cade corrections), and a curve representing the average
experimental data of Enemark and Gallagher. " Electron
spiraling will lower the polarization measured with our
magnetically confined gun, and as expected our results
are slightly lower than the theoretical values and the
measurements of Enemark and Gallagher using an elec-
trostatic gun. The polarization measured here is general-
ly consistent with several percent degradation due to
spiraling; this is somewhat larger than expected from
considerations of the mechanisms described in Sec. III C,
which are thought responsible for inducing the spiraling.
The inconsistent near-threshold polarization value at 2.28
eV is attributed to minor energy drift and/or background
drift during the & 1 hour data-averaging required for this
near-threshold condition. This uncertainty reduced to
& 3% for E ~ 2. 5 eV; the signal-to-random-noise ratio

for all the vz-scan peak-area measurements had a typical
statistical uncertainty of —1%. Additional uncertainties
arising from determination of the baseline and line over-
lap are estimated as & 5% for Q I and —1% for the other
partial cross section.

B. Di8'erential, partial cross sections
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FIG. 12. Test of the ability of Eq.(3) to fit the theoretical

Q (x) from Ref. 14. The theoretical values are represented by a
solid line connecting the values at calculated angles, which are
at breaks in the curve; Eq. (3) fits are dashed line.

The angularly differential character of the partial cross
sections will now be discussed. The Q, (x) in Fig. 10 are
the primary results of the experiment. As described
above, these Q'(x) were obtained by least-squares fitting
the constants in Eq. (3) using increasing L,„until con-
vergence was obtained, and sometimes also averaging
over small oscillations. We will compare these to
theoretical Q'(8) from the Moores and Norcross calcula-
tion, which is the only publication with sufficient detail to
allow evaluation of these differential cross sections. But
before doing that it is of interest to see how well the trun-
cated expansion in Eq. (3) can fit these theoretical Q,'(x).
If a good fit is obtained for the t. ,„used to analyze the
data, then the limitations of this truncated expansion is
probably not the cause of any discrepancies between
theory and experiment. Two such comparisons are given
in Fig. 12 where it is seen that excellent fits are obtained.
Qn the other hand, the theoretical Q&(x) suddenly de-
creases to zero between x =0.93 and 1.0, whereas the Eq.
(3) expansion with l,„=3 is clearly not capable of
representing such behavior. In this case only the area un-
der the forward peak should be the same for the experi-
mental and theoretical Q (x).

The Moores and Norcross paper only provides R-
matrix values at a few energies, of which the 3.0- and
4.0-eV values are closest to our 2.6-, 3.1-, and 3.6-eV
data. To show E dependences we have replotted our data
versus E in Fig. 13. Here one sees that overall the vari-
ous Q'(x) vary systematically with E within the energy
range probed. [However, the Qo at the right side of Fig.
13(c) are somewhat inconsistent, as these have a very
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large uncertainty in this region where a much larger Q &

also contributes to the measured mz = —
—,
' signal (see Fig.

10). Note, also, that Q, (x) does not vary systematically
at the left side of Fig. 13(b). This fluctuation is an exam-
ple of the small-Ax or high-frequency oscillations that are
poorly established by the deconvolution. ] In particular,
the higher-angle (x (0.5) portions of all the Q' decrease
slowly with increasing energy, and the forward peaks in-
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FIG. 13. Comparison of the measured Q,'(x) (solid lines) to
the Moores and Noreross calculation {dashed lines). Note that
the experimental energies are 2.6, 3.1, and 3.6 eV, whereas the
calculation is at 3.0 and 4.0 eV; (a) is Qo(x), (b) is Q, (x), and (c)
is Qo(x).

crease rapidly with increasing energy. Thus, it is quite
easy to compare to the theoretical Q'(x) in spite of the
minor energy differences, as is done in Fig. 13. Note that
the calculation and experiment are in reasonable agree-
ment regarding the overall shape and forward or back-
ward peaking. On the other hand, there are significant
differences when detailed shapes are considered. Some of
these differences are larger than the experimental uncer-
tainties, but fractionally small Q regions and relatively
rapid undulation differences should be disregarded.

The presence or absence of forward peaking in these Q,'

has a simple "physical" explanation, in that hm, =0 exci-
tation is optically allowed and therefore expected for
large impact parameter collisions that produce small
defiections. Similarly, hmL =0 is most "allowed" and
long-range near threshold, again emphasizing forward
scattering. For Qo both hm, and b, m& are thus "al-
lowed" and strong forward peaking is expected and
found. In contrast Qo involves spin exchange and is the
least likely at long range; and it is indeed observed to
have a backward peak. Another well-known and under-
stood phenomena is the shift of each Q,'(8) toward for-
ward angles as the collision energy is increased. Howev-
er, the relatively constant Q,' shape at higher angles for
Ef =0.5—1.5 eV was not expected.

VII. CONCLUSIONS

The energy and angular dependence of the three
differential cross sections in Fig. 13 offers a unique over-
view of near-threshold electron excitation; here the ener-

gy range is from 1.24 to 1.71 times the threshold energy.
The partial cross section Qo which results from spin ex-

change is backward peaked, and as collision energy in-

creases this backward peak decreases while the forward-
angle parts increase slowly. The total Qo thus changes
little across this energy range. The two hm, =0 partial
cross sections (Qo and Q&) are forward peaked, and the
forward peak increases with increasing energy while the
high-angle portions decrease. (Look at the overall trends
at higher angles to see this, recognizing that this region
represents a small portion of the total Qo and thus is frac-
tionally less accurate. ) The forward-peaked character of
these two Q, is consistent with expectations for the very-

long-range character of this dipole-allowed cross section,
whose overall size is —30 A . It can be seen that

Qo/Q( )) 1 and it increases near threshold, as expected
from the Percival and Seaton threshold condition

Qo/Q, = Qo. Also, it is interesting that this Qo/Q, ratio
generally increases with angle, as expected from the Born
approximation relationship between 5m I and Ak direc-
tion. The presence of undulations in Qo and Q, is in-

teresting, but we do not have any simple explanations or
know if this is a general characteristic. Most or all of
these trends and characteristics are probably a general
property of near threshold excitation of dipole-allowed
transitions.

The partial cross sections calculated by Moores and
Norcross (MN) are typically within 20&o agreement with
the measurements for the three largest Q,' components
(Fig. 4). For electron energies below the 4S threshold
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there is no cascading from higher-lying electron-excited
states, and the data may be compared directly to their
calculated values. Here the measured Qo values are gen-

erally about 10% smaller than those of MN, while the Q,
data are -20% larger, excepting the anomalous 2.28-eV
value. Overall, these results serve to emphasize the im-

portant role that spin exchange plays in the low-energy
excitation process.

As noted in our previous publication, there appears to
be a discrepancy between the measured Q', results and
the calculated values of MN below the 4S threshold.
Cross-section mixing effects due to spiraling appear
insufficient to account for the observed difference as

~5m, ~ m, [

these primarily add a fraction of Qo
* to each Q,

For example, even if the entire discrepancy between our
measured reduced polarization and the average of that
measured by Enemark and Gallagher (Fig. 9) were attri-
butable to spiraling, this would yield an apparent
enhancement of less than 20% in the Q', cross section at
2.8 eV.

We conclude that this calculation, which has stood the
test of time amazingly well, could now be significantly
improved in the light of current experimental advances.
We hope that such an effort would provide valuable and
far-reaching insights into near-threshold electron excita-
tion of atoms.

As already noted, this experiment provides four partial
cross sections for Na 3S~3P excitation but not their
three relative phases. During the course of our work,
Kelly, McClelland, and Celotta have succeeded in
measuring several other partial components of this exci-
tation cross section, " using spin-polarized electron beams.
Since neither experiment yet detects the full set of seven
cross section parameters, and their quantization axes are
rotated by 90', it is not possible to directly intercompare
experimental results. Although this was unplanned, the
two experiments complement each other. Since the ulti-
mate goal is to test physical understanding of the
electron-excitation process, each experiment provides an
independent comparison to the predictions of the best
available theories.
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APPENDIX: POWER-DEPENDENCE CORRECTION

Since the linearly polarized v2 laser propagates along
the magnetic-field direction, it excites the four Am J =+1,
3P3/2 5S, /~ Zeeman transitions shown in Fig. 1. (3P3/2
and 5S&&z will be discussed as fully hyperfine decoupled
in the 218-G magnetic field; corrections of a few percent
size are actually made in the data analysis. ) The transi-
tion strength for the two transitions originating from
~mJ ~

=
—,
' is a factor of three larger than from m J ~

=
—,', so

at low vz-laser power or far-off resonance the probability
that an atom electron excited to mJ =

—,
' emits a 4P-state

fluorescence photon is three times that of an atom excited
to ~mz~= —,'. This ratio becomes approximately unity as
the 3P3/2 ( m I )-5S ( m,") transition is saturated in the
high-power limit for v2 on resonance. In Ref. 6 we show
the rate equations used to calculate the resulting power-
dependent proportionality between the areas under each
~m J ~

component. These include laser-radiation coupling
of one 3P3/2(m J) to 5S(m,") transition plus spontaneous-
emission between 5S(m,"), 4P, 3PJ(mJ), and 3S levels.
Also, we average over the Gaussian laser-beam intensity
profile. The resulting calculated power dependence of
these

~
m J ~

=
—,
' versus —,', 4P-fluorescence detection

efficiencies is given in Ref. 6, where it has been shown to
fit the observations. Overall, Q' are uncertain by -2%
due to power-dependence uncertainty. Most of the
angle-integrated cross section data scans were taken at a
power density of -0.8 W/cm, while the differential
cross sections were measured using —10% of this power.
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