In our youth, there were sure-fire techniques for determining where relationships with persons of opposite gender were going. You would write out his or her moniker like this, with yours underneath:

ALBERT R. ECKLER

FAITH L. WOODWARD

Striking out letters in common, reciting 'love, marriage, friendship, hatred' over letters which remained, you learned whether you were heading for matrimony or another outcome. However, supposing this resulted in unpleasant verdicts, you could try full appellations, like **ALBERT ROSS ECKLER versus FAITH LORRAINE WOODWARD**. More auspicious results might occur. If this didn't work, you would try A. ROSS ECKLER, etcetera, until you were satisfied. Desired predictions could usually derive from using proper variants of his or your full cognomen.

This kind of juggling of facts for desired results is reminiscent of techniques employed in numerology. Substituting numbers 1 through 26 for letters in alphabetical order, words are manipulated arithmetically, thereby producing marvelous discoveries. I wrote out my moniker like this:

FAITH GIRL

In every instance (ignoring zeroes):

- Straight addition yields: $8 + 9 + 18 + 12 = 47, 4 + 7 = 11, 1 + 1 = 2$
- Multiplication yields: $8 \times 9 \times 18 \times 12 = 15552, 1 \times 5 \times 5 \times 2 = 250, 2 \times 5 = 10, 1$
- Finally, multiplication with subsequent addition:

$$8 \times 9 \times 18 \times 12 = 15552, \quad 1 + 5 + 5 + 5 + 2 = 18, \quad 1 + 8 = 9$$

Presto! Three different magic numbers for GIRL, proving anything you wish.
Is GAIL compatible with LARRY? Using (1) addition only, (2) multiplication only, (3) multiplication with addition:

GAIL = 7 + 1 + 9 + 12 = 29, 2 + 9 = 11, 1 + 1 = 2
LARRY = 12 + 1 + 18 + 18 + 25 = 74, 7 + 4 = 11, 1 + 1 = 2
GAIL = 7*1*9*12 = 756, 7*5*6 = 210, 2*1 = 2
LARRY = 12*1*18*18*25 = 97200, 9*7*2 = 126, 1*2*6 = 12, 1*2 = 2

GAIL = 7*1*9*12 = 756, 7 + 5 + 6 = 18, 1 + 8 = 9
LARRY = 12*1*18*18*25 = 97200, 9 + 7 + 2 = 18, 1 + 8 = 9

Three identical pairs: obviously soul-mates!

Would you like lucky numbers for yourself? Nothing simpler: merely figure out numerical values for different legal variations of your title:

Faith Lorraine Eckler 1
F. W. Eckler 2
Faith Woodward Eckler 3
Faith W. Eckler 4
Faith Lorraine Woodward Eckler 5
F. Eckler 6
Mrs. F. W. Eckler 7
Faith Eckler 8
Mrs. Faith W. Eckler 9
Mrs. Faith Lorraine Woodward Eckler 10

In every instance I merely performed simple substitution of numbers for letters with addition of successive digits. Unfortunately, nothing appears uniquely auspicious.

Supposing I try multiplying numbers first using addition in succeeding operations. I usually sign letters FAITH W. ECKLER. This works out 6*1*9*20*8*3*5*3*11*12*5*18 = 3541190400 = 27 = 9. Sometimes, I write simply Faith Eckler = 153964800 = 36 = 9, or perhaps F. W. ECKLER = 2459160 = 27 = 9. Absolutely amazing patterns begin emerging! All nines! Still more amazing, every component of this moniker yields nine if manipulated in this fashion: MRS = 4446 = 18 = 9, FAITH = 8640 = 18 = 9, LORRAINE = 77565600 = 36 = 9, WOODWARD = 34279200 = 27 = 9, ECKLER = 17820 = 18 = 9. Surely I'm uniquely favored, perhaps worthy of special reverence or adoration.

Actually, this is completely unamazing. It utilizes simple arithmetic principles which appear in "casting out nines" multiplication checks. Every time you multiply strings of numbers which include nine or which include numbers with multiples of nine for their product, you will inevitably find nine resulting from such processes. Confused? I illustrate with several examples:

\[1 \times 9 \times 1 \times 3 \times 2 = 54, 5 + 4 = 9\]

Nine being present here, nine will result. Or consider:
Three times six equals eighteen (twice nine), again producing nine for our final answer.

Applying this rule for every component of MRS. FAITH LORRAINE WOODWARD ECKLER, you will notice FAITH contains I which is alphabetically ninth, while MRS, LORRAINE, WOODWARD, ECKLER all contain R (alphabetically eighteenth, or twice nine). Therefore, I could select every possible variant of this appellation with identical results. Nine will occur every single time. Sorrowfully, I conclude there's nothing very special about Faith W. Eckler.

Is this property I've discussed found very often in English language? In other words, will nine result frequently from manipulating English words in this manner? Surprisingly, large percentages of words exhibit this phenomenon. Examining Merriam-Webster's Pocket Dictionary, I find 196 out of 541 three-letter words (or 36%) demonstrate this property. 75% of five-letter words together with 98% of ten-letter words likewise give this result. Nine is certainly therefore significant for large numbers of words.

You, too, could claim nine for your lucky number if your moniker contains either I or R, or alternatively (typical examples in parentheses):

CC (aCCent)	FF (gaFFes)	LL (aLL)	OO (tOO)	UU (tUU)
CF (FaCt)	FL (FLy)	LO (OLd)	OU (YOU)	UX (tUX)
CL (LaCk)	FO (OF)	LU (bLUe)	OX (bOX)	
CO (COve)	FU (FUn)	LX (LaX)		
CU (Cub)	FX (FaX)			
CX (eXCept)				

This numerological property is potentially valuable. You could win wagers in your local bar, betting your fellow patrons their surnames equal nine. Studies of common surnames (in Social Security records) reveal 89 out of 100 surnames satisfy constraints. Similarly, only 4 of 34 different Presidential surnames fail. Chances are very high you will win this wager -- you could retire rich!

Finally, you could write entire articles for this journal which employ only words exhibiting this property. Quite simple isn't it?