THE GROWTH OF A WORD NETWORK

A. ROSS ECKLER
Morristown, New Jersey
LEONARD J. GORDON
Chico, California

The May 1973 issue of *Word Ways* introduced the concept of a word network, a connected diagram of words of a single length, in which any two words differing in only one letter in the same position (as BRA and ERA, or TON and TEN) are joined by a line. Networks with more than 50 to 100 words are generally too complicated to diagram on a single sheet of paper, and it is difficult to assess their properties.

In particular, it is hard to assess the degree of connectivity of a network—is any pair of words connected by many different routes, or are there isthmuses (such as Panama between North and South America) through which most routes must go? If most of the words are contained in a single main network, with only a few words or small groups of words left out, it is conjectured that no major isthmuses exist. However, it is possible that such isthmuses transitorily form as networks are built up a word at a time, joining formerly isolated groups for the first time.

To evaluate this possibility, this article shows how one can chart the evolution of a word network from a set of unconnected words. The diagram on the next two pages shows how it can be done, using three-letter words as an example. Kucera and Francis's Computational Analysis of Present-Day American English (Brown University Press, 1967) tabulates the observed frequencies of words in a million-word sample of materials printed in the United States in 1962. One can build up a network of words one at a time in decreasing order of frequency, starting with THE, AND, WAS, FOR, and HIS. At first, no words are connected. The initial link occurs between HIS (ranked 5th in the list) and HIM (ranked 15th). When HAS (6) appears, it joins the HIS-HIM fragment with two isolated words, HAD (6) and WAS (3). All this is diagrammed at the top of the tree-like structure on the next page, in which each word is followed by its Kucera-Francis ranking. The only word that might be fairly identified as an isthmus is NOR (69), which unites the 18-word network on the left with the 14-word network on the right by joining FOR in the former with NOT (or NOW) in the latter. (The parenthesized number preceding NOR indicates that the main network now has 33 members, or 48 per cent of all the words thus far sampled: $33/69 = 0.48$.) Note that the isthmus begins to disappear with the very next word added, LOW, which joins LAW with NOW (or HOW).

Scanning the diagram, one sees that the main network soon becomes so large that it attracts other word groups to it before they...
concept of a single length, in the same d by a line. (too compli
ty too compli-

can chart any different en North and (most of the
jectured that such ishmus-
at a time, a
eone can chart connected words. be done, us-
cisc's Compu-
rown Univers-
of words in United States at a time in), WAS, FOR, (I link occurs (15th)). When
ed at the top of each word that might that unites the on the right latter. (The
he main net-

work soon be-
it before they
become ver-

dimensional w,

ably bef or

to be in w

joining won

By the a

main netw

a number ALL-Ill, is reached,

Each pa

a series o

ever, then

all word-p

of these m

network. In

can-n

the span it

It is in

evolves. Or

imum valu

out of isla

merely cre

work grows

if an isla

annexation

sula is for

In the a 14-word

island with

with a span

the-she-s

There a Dictionary

span of the

ivy-icy-i

There ar Dictionary

and OXY--a

reduced to

ivy-icy-i

ivy-icy-i

Some paths

are 33 word
become very large. There are no hard-to-reach places in three-dimen-
sional word space where a group of words can build up consider-
ably before joining the main network. The greatest potential seems
to be in words beginning with a vowel, which have difficulty in
joining words beginning with a consonant.

By the time one has sampled 169 Kucera-Franics words (omitting
abbreviations such as REV(erend), SEN(ator), and AUG(ust)), the
main network has incorporated 85 per cent of the sample, leaving
a number of isolated words plus the groups WHO-WHY, HER-PER,
ALL-ILL, and TWO-TOO-TOP-TOM. When the next word, TIM 170,
is reached, this four-word group is brought into the main network.

Each pair of non-adjacent words in a network can be joined by
a series of intermediate words, often in more than one way; how-
ever, there is always some path of minimum length. Looking at
all word-pairs in the network, the number of steps in the longest
of these minimum-length paths is defined to be the span of the
network. In the simple network

\[
\text{had} \\
\text{can-man-may-way-was-has-his-him}\]

men

the span is 7, achieved by CAN (or MEN) to HIM.

It is instructive to see how the span changes as the network
evolves. One expects it to increase with network size to some max-
imum value, probably achieved when the main network first forms
out of islands, and then slowly decrease when there are no large
islands left to annex and most of the words added to the network
merely create alternate paths and short-cuts. However, as the net-
work grows, the span may temporarily increase. This will occur
if an island being annexed is moderately large, and the point of
annexation is near the edge of the main network, so that a penin-
sula is formed.

In the evolutionary network diagrammed previously, NOR joins
a 14-word island with a span of 9 (THE to FEW) to an 18-word
island with a span of 7 (CAN to HIM), to form a 33-word network
with a span of 14:

\[
\text{the-she-see-set-get-got-not-nor-for-far-war-was-has-his-him}\]

There are 539 three-letter words in the Merriam-Webster Pocket
Dictionary (excluding abbreviations such as DDT and TNT); the
span of the main network has been reduced to 11:

\[
\text{ivy-icy-ice-ire-ere-err-ear-bar-bay-say-sky-ski}\]

There are 907 three-letter words in the Official Scrabble Players
Dictionary (OSPD). All but six of these—GNU, QUA, EBB, ISM, ÚGH,
and OXY—are in the main network, and the span has been further
reduced to 10:

\[
\text{ivy-icy-ace-aye-tye-the-thy-try-fry-fro}\]
\[
\text{ivy-icy-ace-aye-tye-the-thy-try-pry-pro}\]

Some paths of the network are extremely dense; for example, there
are 33 words one step away from PAT, and 244 more two steps away.
Probably one-third of the network lies within two steps of the cycle PAT-PAY-SAT-SAY.

How do corresponding networks of four- and five-letter words evolve? Their behavior is very similar to the three-letter one: at first a large number of islets which coalesce into a few large islands, then a grand coalition of the major islands into a main network containing some 40 to 50 per cent of the words in the sample. However, these newly-formed main networks are much larger in size. The four-letter main network is formed when HOLE unites a 71-word island with a 56-word one, followed immediately by LOSE which unites the resultant 128-word island with a 27-word one. The newly-formed main network of 156 words uses 47 per cent of the 331 words sampled to that point.

As the four-letter main network is five times as large as the three-letter one, it is not practicable to show the detailed diagram of its growth here. However, one can capture the flavor of the network growth by noting those words which unite the network with islands. For example, in the three-letter network, WAY joins an island of size 5 containing WAS, to an island of size 3 containing MAY, to form a new island of size 9. By the time this has grown to size 13 by four single-word accretions (not specified below), the word FAR links WAR with the single-word island FOR to form a new island of size 15. The growth of the largest island is thus charted until it becomes so overwhelmingly larger than other islands that it can be fairly termed the main network (at NOR).

5 has (his 2, was 1, had 1) 76 die (did 74, due 1)
9 way (was 5, may 3) 80 buy (but 77, boy 2)
15 far (war 13, for 1) 83 dry (day 81, try 1)
33 NOR (for 18, not 14) 103 odd (add 101, old 1)
42 ran (man 40, run 1) 109 Bob (boy 106, job 2)
44 led (let 42, red 1) 119 aim (aid 111, arm 7)
52 sun (run 50, son 1) 143 fog (fig 141, dog 1)
59 bit (hit 52, big 1, but 5) 148 Tim (aim 143, Tom 4)
71 sex (see 61, six 9)

Note how, as the main network grows, the average size of the annexed islands decreases, and the time between successive annexations increases.

The corresponding list of annexations for the four-letter evolutionary network is given below. By the time the main network attains a size of 344 with FRED, it contains 67 per cent of the 513 sampled words.

4 gave (give 2, have 1) 57 Rome (cone 52, role 4)
11 live (five 5, love 1, like 4) 65 wore (more 58, were 2, work 4)
13 move (love 11, more 1) 128 HOLe (home 71, hold 6)
17 fine (five 13, find 3) 156 lose (nose 128, lost 27)
27 game (gave 17, same 9) 165 fort (form 159, sort 2, foot 3)
31 firm (fire 28, form 2) 176 lake (like 168, late 7)
37 Mike (like 33, make 3) 188 mile (mine 186, milk 1)
44 nine (line 39, none 4) 196 wave (have 192, wage 3)
52 wine (line 48, wide 3) 199 load (road 197, loan 1)

What-the-tha
view-Viet
which joins
wait-want
lose-lost
At the time
however, the
time when
very-var
Curiously, the peninsula was
by the time
the five-
one, again
main network
a 233-word
If the cycle letter words into a main network at the 7-word one, a large is much larger HOLE unites it by LOSE 7-word one. per cent of per large as the labeled diagram favor of the network with MAY joins an 8 containing which has grown tied below), FOR to form and is thus in other is- NOR).

There are a number of small islands that join the main network later. The largest two are:

which joins to SHIP in the main network when CHIP, the 636th word, is sampled, and view-Viet-diet the!-tied

dies=ties=lies=lips
goes=does=toes

dogs

which joins to LOTS through DOTS, the 784th word in the sample. At the time the main network is first formed with the aid of HOLE and LOSE, the span reaches a value of 23:

wait-want-went-west-best-beat-head-held-hole-role-rose-lost-last-fast-fact-pact-part-park-mark-Mary-many

However, the largest known span of 25 is achieved for the first time when VERY is added to the network and it reaches a size of 293:

Curiously, the 16-word island annexed by FLEW does not form a peninsula which extends span beyond 25. The span decreases to 14 by the time 3670 words in the OSPD have been sampled, as reported in the February 1989 issue of Word Ways.

The five-letter evolutionary network resembles the four-letter one, again scaled up by a factor of five or so. The five-letter main network is formed when BEATS unites a 383-word island with a 233-word one, BLINK unites this 617-word island with a 69-word
one, and BLOTS unites this 687-word island with a 27-word one, to form a main network with 715 words, 43 per cent of the 1664 words sampled to that point. The full list of annexations is:

- 5 lives (gives 2, lines 1, lived 1)
- 8 loved (lived 6, moved 1)
- 18 mines (lines 9, minds 4, miles 4)
- 21 wines (lines 19, wins 1)
- 28 wives (lives 23, waves 4)
- 33 lover (loved 29, cover 1, lower 2)
- 41 males (miles 34, sales 6)
- 44 talks (tales 42, tasks 1)
- 47 tanks (talks 44, banks 2)
- 54 balls (bills 47, calls 6)
- 58 liver (lived 56, river 1)
- 60 rider (river 58, wider 1)
- 70 lever (liver 64, level 1, never 4)
- 87 files (miles 72, filed 14)
- 89 Sally (Wally 87, silly 1)
- 96 maker (makes 94, Baker 1)
- 98 sadly (sally 96, badly 1)
- 100 tires (flies 98, times 1)
- 123 bands (banks 100, bonds 5, hands 17)
- 126 wired (tired 124, wiped 1)
- 147 mates (miles 127, rates 19)
- 155 rides (rider 148, rises 1, sides 5)
- 160 sings (wings 158, songs 1)
- 172 cares (cared 162, cards 2, cases 7)
- 175illy (Billy 172, fully 2)
- 180 pants (parts 178, wants 1)
- 187 timed (times 182, aimed 4)
- 191 belts (bells 189, pelts 1)
- 210 dones (doses 193, homes 16)
- 218 merry (merry 213, mercy 1, Jerry 3)
- 221 modes (moves 219, codes 1)
- 224 model (modes 221, motel 2)
- 233 forks (forms 231, folks 1)
- 239 mails (fails 237, maids 1)
- 246 marks (holds 239, moons 6)
- 249 paces (faces 247, paced 1)
- 252 tunes (tones 249, dunes 1, tubes 1)

The largest island to join the main network later contains 27 words:

- fetch-letch
- latch-match=catch=watch=patch=batch=hatch
- march=pitch=bitch=hitch=ditch
- marsh=pinch=Dutch
- harsh=punch=hunch=bunch

This island joins to PEACE in the main network via PEACH.
By the time BEAME (the surname of a former New York City mayor) is reached, the main network still contains less than half of the words sampled (46 per cent).

At the time the main network is formed with the aid of BEATS, BLINK, and BLOTS, the span reaches a probable maximum value of 52:

The span is 48 at the time BEAME is added to the network. As reported in the February 1989 *Word Ways*, the span decreases to 29 for the 8200+ five-letter words in the OSPD.

Here is a summary of the span behavior in the evolutionary network as a function of word length:

<table>
<thead>
<tr>
<th>Word Length</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span at time of coalition</td>
<td>14</td>
<td>23</td>
<td>52</td>
</tr>
<tr>
<td>Largest-known value of span</td>
<td>17</td>
<td>25</td>
<td>52</td>
</tr>
<tr>
<td>Ratio of largest to OSPD span</td>
<td>1.70</td>
<td>1.79</td>
<td>1.79</td>
</tr>
</tbody>
</table>

As the word length increases, the span at the time of coalition seems to approach the maximum span in value.

Finally, one should note that the Kucera-Francis ranking of words in decreasing order of frequency is to a considerable extent dependent upon the sample of words drawn -- a different million-word sample would change the relative ranking of all but the few dozen commonest words. There is no particular significance in the fact that NOR, HOLE, LOSE, BEATS, BLINK, and BLOTS were the essential links that first formed the main networks; in another sample, other words would assume this role. Nevertheless, it is likely that the statistical features of this study -- the size of the maximum span, the percentage of the sampled words included in the main network when it first forms, etc. -- would be approximately the same if a new sample were taken. In fact, one might even be able to simulate the behavior of evolutionary word networks by taking random samples of various sizes from the OSPD word lists. This is, in fact, the only way available to study evolutionary networks with words of six letters or more, for the Kucera-Francis sample is not large enough even to show the coalition of islands into a main network.