159
ON PRUNING TREES FOR PANGRAMS

LEONARD GORDON
Tucson, Arizona

In the February and May issues of Word Ways, Lee Sallows de-
scribes how he constructed a pangram machine (a special-purpose
digital computer) to discover self-referential sentences of the form
"This sentence contains five a's, two b's, ... and one 2z'", after
he realized that the program he had written for a general-purpose
digital computer would trake 31.7 million years to run. There's
no doubt that building the pangram machine was a personally
satisfying accomplishment -- although I am afraid that it became
his Galatea.

However, he gave up too easily on the general-purpose computer.
Better pruning logic could have saved the day; 1in particular,
his attempt to survey the entire board after each series of moves
is, I fear, a loser.

Some years ago, | chose to compusolve the four-by-four sliding
block puzzle (the 15 Puzzle). Recreational mathematics books dis-
cuss the trivial matter of possible vs. 1impossible arrangements,
but the challenge 1is to find a minimum-move sequence from one
arrangement to another. When planning my attack, 1 realized that
the problem would take forever unless I introduced tree-pruning
logic. The obvious approach 1is to monitor the ideal distance from
home and cut when it exceeds the allowed. I discussed the problem
with my brother, Jerry, a former electrical engineer with Sylvania
who built gadgets like Sallows' pangram machine back in the 1950s.
When [ complained that surveying the board after each move would
be too costly in computer time, he proceeded to write his first
(and only) computer program to show me how it should be done.
Calculate the 1ideal distance at the beginning of the search and
then modify it after each move. When block x moves from cell
y to cell z, read the change, T(x,y,z), from a table prepared
earlier.

Tree-pruning logic 1s applicable as well to finding pangrams,
and, in fact, 1is the key to their successful construction by comput-
er. But, unless the programmer uses logic like mine, he will not
get a program that converges in reasonable time no matter how
fast his language and machine. (Did Sallows realize this when
he decided to construct a pangram machine instead? There is noth-
ing in his article to indicate it.)

[t took me about a week to write and debug a program for the
pangram problem. Handling the logic was easy enough since 1
was familiar with it, but there 1is considerable bookkeeping involved



160

(plenty of room for typos). After my initial run using one of Sal-
lows' results as a test case, | estimated that it might take from
three to twelve hours to search for a solution to a problem. Over
a period of another two to three weeks, [ reduced that to 30 min-
utes to two hours by introducing branch-cutting logic. Here is
one of the first pangrams my computer found -- a fitting sequel
to Sallows' hundred:

this umteenth dumb pangram has five a's, two b's, one c, three
d’'s, thirty-two e's, six f's, three g's, nine h's, ten 1i's, one
j, one k, one 1, four m's, twenty-one n's, fourteen o's, two
p's, one g, eight r's, twenty-seven s's, twenty-one t's, five
u's, six v's, seven w's, three x's, five y's, and one z

I do not know how my time of 26.2 minutes to solution, 45.7 minutes
to exhaust the search for this particular problem, compares with
Sallows' machine. His discussion 1is wvague, but I think he says
it's about two hours per run after he has chosen reasonable search
limits. (In this case mine were e 28-35, f 6-9, g 2-5, h 5-10,
i 9-13, 1 1-4, n 18-23, o 12-17, r 6-10, s 25-30, t 20-25, u 2-6,
v 3-6, w 6-11, x 2-5 and y 3-6. These limits are tight; [ made
a good guess.)

It's better to expand the limits somewhat so as to exhaust the
search in about two hours - a compromise between run (worrying)
time and the likelihood of finding a solution. I use QuickBasic
4.0 to program on a 286/12 machine. 1 estimate that someone using
a faster language on a faster home computer could reduce my search
time by a factor of 30 - possibly even 100; I have no idea what
the run time would be on a mainframe computer.

Sallows estimates that one of eight sentences has a solution,
and that one of 64 has a second solution as well. I have not
tested those estimates, but 1 suspect one could do better if wider
search limits were wused. Sallows found only one sentence with
three solutions. 1 found that the first sentence in his list of 100
has two solutions in addition to the one he gave. For this search,
[ used the same limits as above except that a slightly wider range
(16-23) was allowed for n. The time to exhaust the search was
70.7 minutes.

This first pangram has

five five five a's
one one one b
one one one c
two two two d's
twenty-eight twenty-nine twenty-eight e's
six six eight f's
five four four g's
eight eight seven h's
twelve twelve thirteen i's
one one one j
one one one k
three three one 1's



161

two two two m's
sixteen nineteen twenty-one n's
twelve twelve fifteen o's
two two two P's
one one one q
seven eight six r's
twenty-eight twenty-six twenty-six s's
twenty twenty twenty-one t's
three three two u's
six five five v's
nine nine nine w's
four three three x's
four four five y's and
one one one z

Here is a different approach to finding self-referential sentences.
Start with a sentence like "This aeinoprst pangram has (or sentence
contains)...'". Relax the convergence criteria to allow a few errors,
determine which letter-sums are wrong, add or subtract these letters
to the aeinoprst store, and anagram the result to something mean-
ingful. In this case, "a" remains 1in the store, while '"p" may
be replaced by b, ¢, k, j, etc. My own results are not very inter-
esting, but someone skilled at anagramming might want to pursue
this. At least this approach brings the problem into the realm
of wordplay instead of pure algebra. Send me a base sentence
and a suggested set of letters to play with, and I'll send you
some toys.



