
233

DEAR COMPUTER, IS THE LETTER-STRING A WORD?

MICHAEL KEITH
Salem. Oregon

In "Is That Letter-String Really a Word?" in the May 1999 Word Ways,
Ross Eckler considers the question of determining the plausibility that a
given letter string is an Englis h word.

Since I do a Lot of word explorations using a co mputer , this led me to
ponder a related. but slightly different question: what is the quickest
way for a comp uter program to determine if 8 given letter string is a
word? In t his case, plausibility isn't good enough: no false positives or
false negatives are allowed . We need to be able to determine unequiv
ocally if a given letter string is present in a (possibly very large) word
list.

PIRST STEPS

The first method one might employ is a naive, brute-force search .
This simply compares the input letter string to every word l.n the
dictionary. One dictionary word list I frequently use has about 100,000
words, so this would involve 100,000 comparisons. It might seem that
each comparison would involve checking all the letters in t h e two
strings being compared, but since we check each letter one at a time,
usually only one letter (the first one) has to be compared . Most of the
time t h e first letters will differ, and so we can immediately con clude
that t he letter string doesn't match the word in question. Thus, on the
average, t his method requires a little more than 100,000 co mparisons .

We can do much better by grouping all the N-letter words in our
word list together. When we are given a letter s tring, we know (or can
easily determine) how many letters it has, and then we need only
compare it against th e N-letter words in the word list. If the length of
the input string is assumed to be random, then on the average this
reduces the number of comparisons to abo ut 6,000.

We can carry this idea a step further. Take each length-N word list
and divide it into 26x26 :; 676 sublists, each one containing all. those
words that start with a certain bigram. We now need to augment o ur big
word list with two tables : one that say s , for each bigram, how many
words there are in that s ublist. and one that gives the location of each
sublist within the big list. These two tables require a total of 26x26x4
(because each entry is four bytes)x2(for two tables) :; 5408 bytes. We
need tables for each word length (say, from 1 to 15). for a total of
about 8lK bytes. This is very s mall and so quite reasonable .

.. --

234

Now, when we are given a letter strin g , we first c h eck the big ram
table for the requisite N. POl' about two-thirds of t h e bigrams. t he table
will say there are no words of length N startin g with this bigram, so we
can immediately conclude "not a word" with no further work . When we
do have to c heck for a match, only about 32 (in stead of 6000 . 85 a bo v e)
wo rd s have to be checked.

GETTING MORE SOPHISTICATED

Although this might seem pretty good, we can do much better. The
next step is to eliminate the need for co mparing words Letter by letter.
This can be done by turning each word in the dictionary into a base-27
number. using A=l. 8 =2. etc ., and considering eac h letter as a digit in
place-value notation. POl' exa mple. ACE beco mes t h e number 27x27xl(for
A) + 27x3(for C) + 5(£or E) = 815. Actually, we o nly h ave to u se the last
N-2 letters. since the first two are implicitly known due to the parti
tioning of the dictionary into sections by initial bigram. Suppose our
words are 15 letters in length. Then we n eed a range of 27~(15-2) to
represent any word. As luck would have it, 27&13 is slig htly less than
2&64, so we can fit the value of any word into a 64-bit binary computer
word. Two-letter strings can be compared by simply co mparing two 64-
bit numbers--an operation well-suited to the way co mputers work .

Purthermore, if the words in our diction ary are in alphabetical order
(as they no doubt will be), our base-27 numerical "words" will b e listed
in increasing order. Such a list can be searched mu c h faster than by
the naive method of scanning from top to bottom: we ca n u se a binary
search. We first compare our input number M with the number i n the
middle of the list. If it is less tha n or equal to it , we then know that M.
if present in the list at aU, must be in t h e first half. (Similarly , if M is
greater . we know it must be i n the second hali.) This procedure is
continued by. at each step, co mpa rin g M against the number in the mid
dle of whatever range is left. until there i s only o ne candidate left.
Then we compare to see if it is exactly eq ual. whic h tells us whether M
is 10 the word list.

We said above that about 32 word s have to be checked o n the
average. With a binary sea rch this only requires 5 co mparisons instead
of the 32 needed by the naive scanning method--a sig nificant reduction.

At this point it might be tempting to stoP. but this is precisely where
Eckler's article comes into play. Can we use methods similar to the ones
he suggests to quickly d etect that a letter string is not a word. thus
avoiding the whole binary search most of the time ? Note that any
technique we employ must be very s imple or it will not be worthwhile.
since the algorithm we have developed thus far is quite fast already.

The answer is yes, we ca n. The following two enhan ceme nts make the
overall word - c hecker significantly faster.

235

(1) THE SMALL-WORD CHECK

Por small sizes we can avoid the binary search altogether by having
another table that immediately gives us the answer ("is a word" vs "not
a word"). We decided to do this for 1-, 2-, 3- and 4-Letter words, since
these have 27x27x27x27 = 456,976 possible base-27 values. If the string
is four letters or less. we calculate its base-27 value and then check a
table of single-bit vaLues (0 for "not a word", 1 for "is a word"), Since
each table entry is only one bit. this entire table only takes 456,976 / 8 =
57122 bytes. The table is calculated once and stored on disk, 50 it need
not be recreated each time.

(2) THE TERMINAL-4-GRAM CHE CK

We also precalculate another table, of size 27x27x27x27. which says
whether there are any words with five or more letters whose terminal 4-
gram has a specific base-27 value. As it turns out, only about 4 per
cent of the possible terminal 4-grams appear in our dictionary, so in 96
per cent of all cases we are able to decide immediately that the letter
string is n ot a word .

The key cleverness in this step is its economy. Almost no extra com
putational effort is required, because calculation of the base-27 value
for the last four letters is an intermediate step in calculating the base-
27 value for the last N-2 letters (which we have to do in order to begin
the binary search). This step requires almost no superfluous calculation.

,

The complete word-recognition algorithm ca n be summarized as follows:

1. If the string is 4 letters or les s , c heck the small-word table and
return its yes-or-no answer. Steps 2-4 ca n be skipped .

2. Co mpute the base-27 value of the i nitial bigram. If the bigram table
says there no words of length N with t his bigram. return "not a
word" and s kip steps 3-4 .

3. Compute the base-27 value of the terminal 4-gram. If the 4-gra m
bl " 'bl " " dO. d k' 4 ta e says n ot pOSS1 e • return not a wor an s lP step •

4. Pinish computing the base-27 value of the last N-2 letters (by start
ing with the base-27 4-gram and adding in the remaining letters). Do
the binary search on the portion of the dictionary correspondin g to
N and th e initial bigram. If the final value equals the value of the
I . tI . d" Is " dO. etter stnng, return LS a wor • e e not a wor .

Is this the ultimate? No, it probably could be made even faster, per
haps by enlarging some of the tables or adding further checks. But the
technique is very fast yet still quite simple (the computer code fits on a
single page), so it seems to strike a good balance between speed a nd
complexity.

236

SOl1E RESULT S

I i mple me n ted t h e me tho d d escribe d abov e in the C programming lan
g u age a n d ["a n it o n my 350 MHl. home PC. Although it ' s a little tricky to
qua ntify . sin ce the r u n time d e pends heavily on the statistics of the
input letter strings . o n t h e averag e it takes about 300 nanoseconds
(sic!) to determin e if a one-to- fiftee n-le tter s tring is a word. This
corresponds to about 100 CP U cloc k cycles. At this s peed, I can test
about t h ree million wo r ds a second fo r validity . Should I be willing to
let a program ru n for fou r d ays , it could decide the fate of a trillion
strio gs!

To test
(h opefully

and
new)

exercise the word-recog n itio n code, I
togological p r o blems to try it on .

-
devised • fe"

Probl.e m 1: Take a 14 - 1ette r wo rd an d wri te its letters in a circle, then
count t h e number of words of three o r more le tters that o c c ur as con
secutive letters in the circle , in either f o rward or reverse order. Which
I.-letter word yields the most wo rds ? The answer, for my word list,
whic h only took 2 .4 secon d s to find , is OPERATIONALIST. The 30 words
foun d i n its circle (not co unting its elf) are: ope, opera, operatio n,
operational , per, era , rat, ratio, ratio n. rational. rationalist, ion, stop ,
stope . stope[". top, tope . toper: sil (OED, a kind o f oc hre), Lan (OED,
loan), tar. tare . are, rep. lis (OED , fleu r - d e-lis), lis t, repot , repots, pot.
pots.

Pro ble m 2: Take a lO-letter wo rd, XXXXXXXXXX, and a IS-letter word .
YYYYYY YYYY YYYYY. a n d write them in a s quare format (left , below):

x X X X X
X X X X X
Y Y Y Y Y
Y Y Y Y Y
Y Y Y Y Y

B R rE P
C A S E S
~ I C R 0
R A D I 0
M ET E R

C H ARM
P U L L Y
T R U S T
W 0 R T H
I N E S S

Whic h pair of wo rd s maximizes the number of horizontal and vertical 5-
letter words in the s quare '? To solve this puzzle. we used our largest
word list, which has 36,400 10-letter and S,900 lS-1etter words. and
e xhau s tivel y t r ied a ll 214 million combination s , checking t he ten five-Iet
t.er s trings eac h time. The program took about ten min u tes to run, and
produ ced a number o f solutions containing seven five-letter words . Two
of the nic er o nes are s hown above. The first yields brief, cases . micro.
radio, meter, eerie, and raise (plural of raia, a zoological group) ; the
second yields charm, fully. trust, worth, Huron, myths, and alure (OED.
allure) . Note that solving this problem using the second-worst search
method desc ribed above (linear search throug h all N-letter words) wo uld
have required seven days i n stead of ten minutes .

