WORDWAYS, Vol. 50, Number 3, August 2017

ALPHAMETRICS

Edited by STEVEN KAHAN

Please send solutions and proposals for new puzzles to
Steven Kahan, 78-51 220th Street, Hollis Hills, New York 11364

50.3.1 Puzzler - 1 by Frank J. Mrazik, Montreal, Quebec

\[\text{TEASER} \times C = \text{RIDDLE} \]

50.3.2 Puzzler - 2 by Frank J. Mrazik, Montreal, Quebec

\[\text{RIDDLE} \times C = \text{TEASER} \]

50.3.3 International Squares - 1 by Paul E. Boymel, Potomac, Maryland

\[\text{PERU} \times \text{PERU} = \text{MALAGASY} \]

50.3.4 International Squares - 2 by Paul E. Boymel, Potomac, Maryland

\[\text{MALI} \times \text{MALI} = \text{PAKISTAN} \]

50.3.5 English Trio by Andrzej Bartz, Fuerth, Germany

\[
\begin{align*}
\text{T W E N T Y} & + 2(\text{N I N E}) + 52(\text{O N E}) = \text{N I N E T Y} \\
9(\text{T W O}) + \text{FOUR} + 2(\text{N I N E}) & = \text{F O R T Y} \\
6(\text{T W O}) + 2(\text{FOUR}) + 2(\text{T E N}) + \text{N I N E} + \text{O N E} & = \text{F I F T Y}
\end{align*}
\]

Solve these three simultaneously, please.

50.3.6 Self-Promotion by Andrzej Bartz, Fuerth, Germany

\[
(\text{W O R D})^2 + (\text{W A Y S})^2 + (\text{W O R D}) \times (\text{W A Y S}) = \text{L O G O L O G Y}
\]

Solutions are sought in base 13 and base 14.
SOLUTIONS TO ALPHAMETICS, Vol. 50, Number 3

50.3.1 Puzzler - 1 by Frank J. Mrazik, Montreal, Quebec

\[480589 \times 2 = 961178 \]

50.3.2 Puzzler - 2 by Frank J. Mrazik, Montreal, Quebec

\[485537 \times 2 = 971074 \]

50.3.3 International Squares - 1 by Paul E. Boymel, Potomac, Maryland

\[3257 \times 3257 = 10608049 \]

50.3.4 International Squares - 2 by Paul E. Boymel, Potomac, Maryland

\[7098 \times 7098 = 50381604 \]

50.3.5 English Trio by Andrzej Bartz, Fuerth, Germany

\[
\begin{align*}
490542 + 2(5350) + 52(650) &= 535042 \\
9(496) + 1678 + 2(5350) &= 16842 \\
6(496) + 2(1678) + 2(405) + 5350 + 650 &= 13142
\end{align*}
\]

50.3.6 Self-Promotion by Andrzej Bartz, Fuerth, Germany

\[
\begin{align*}
(27cb)^2 + (2865)^2 + (27cb) \times (2865) &= 17a717a6 \quad \text{(base 13)} \\
(7ac3)^2 + (7052)^2 + (7ac3) \times (7052) &= baaba65 \quad \text{(base 14)}
\end{align*}
\]