Spin-Exchange Cross Section for Electron Excitation of Na 3S 3P Determined by a Novel Spectroscopic Technique

Xianming Han
Butler University, xhan@butler.edu

G. W. Schwinn

A. Gallagher

Follow this and additional works at: http://digitalcommons.butler.edu/facsch_papers

Part of the Atomic, Molecular and Optical Physics Commons

Recommended Citation
Han, Xianming; Schwinn, G. W.; and Gallagher, A., "Spin-Exchange Cross Section for Electron Excitation of Na 3S 3P Determined by a Novel Spectroscopic Technique" Physical Review A / (1988): -.
Available at http://digitalcommons.butler.edu/facsch_papers/762
Spin-exchange cross section for electron excitation of Na 3S-3P determined by a novel spectroscopic technique

X. L. Han, G. W. Schinn, and A. Gallagher

Joint Institute for Laboratory Astrophysics, National Bureau of Standards and University of Colorado, Boulder, Colorado 80309-0440

(Received 16 February 1988)

An experimental technique is described which enables determination of the partial cross sections for electron excitation of atoms as a function of changes in spin and orbital angular momentum. This method provides a good signal-to-noise ratio in the energy region near threshold, and could be used to study long- or short-lived excited states of many atomic systems. Measurements for Na 3S-3P, near-threshold excitation are reported here. The results are generally in good agreement with the close-coupling calculations of D. L. Moores and D. W. Norcross (J. Phys. B 5, 1482 (1972)) for the largest \(\Delta m_\cdot \) and \(\Delta m_L \) components of the cross section, but not for the component with \(|\Delta m_\cdot| = 1 \) and \(|\Delta m_L| = 1 \), indicating that the exchange interaction is larger than previously recognized.

A measurement of all observables in an electron-atom collision constitutes the so-called "complete" scattering experiment, as first enunciated by Bederson. In the case of excitation of the first resonance level (3S-3P) of sodium, seven parameters, representing the magnitudes and phases of the four scattering amplitudes, must be measured as a function of electron scattering angle for each electron energy in order that the fullest possible information be obtained.

Such a "complete" experiment has not yet been performed, but several groups have measured various combinations of these parameters. Here we obtain a different combination; specifically, we measure the partial (angle-integrated) cross sections for excitation of Na versus changes in \(m_S \) and \(m_L \) of the atomic electron. This is done using a novel experimental technique for several electron collision energies between 2 and 4 eV.

The principle behind the experiment is shown in Fig. 1. Atoms are initially prepared in a pure \(m_\cdot \), \(m_L \) level of the 3S state, and then electron-excited to Zeeman-split 3P3/2(\(m_J \)) levels. The resulting relative populations of these four levels are measured by tuning through the 3P3/2(\(m_J \))-5S1/2(\(m_\cdot \)) transitions with a cw dye laser (designated \(\nu_2 \)), and detecting the 4P-3S, uv cascade-fluorescence signal from the 5S state. The 4P fluorescence originating from each 5S(\(m_\cdot \)) state, although isotropic, is circularly polarized. The optics do not distinguish between different circular polarizations; hence the cascade signal is proportional to the 5S(\(m_\cdot \)) population. The \(\nu_2 \) absorption from each 3P3/2(\(m_J \)) to 5S(\(m_\cdot \)) transition is well resolved in a 220-G magnetic field, as seen in a representative scan shown in Fig. 2. The area under each peak is directly related to the population of the corresponding 3P3/2(\(m_J \)) level; this proportionality depends upon the \(\nu_2 \) laser power, as will be discussed in more detail later. Since these 3P3/2(\(m_J \)) populations are proportional to the 3S1/2(\(m_\cdot \)) 3P3/2(\(m_J \)) excitation cross sections, the data yield the ratios of the 3S(\(m_\cdot \)) 3P(\(m_S \), \(m_L \)) cross sections.

The experimental arrangement is shown diagrammatically in Fig. 3. A supersonic beam of sodium atoms from a recirculating oven is collimated by a slit and state-selected into the \(m_\cdot = \frac{1}{2} \), \(m_L = \frac{1}{2} \) state by optical pumping with a cw dye laser (designated \(\nu_1 \)) in a \(\approx 5 \)-G magnetic field. The spins remain aligned with the \(z \)-directed magnetic field as the atoms move upward into the 220-G field of the collision region. There some of the atoms are excited to the 3P state first by the \(z \)-propagating electron beam, and some of these are further excited to the 5S state by the overlapping, counter propagating \(\nu_2 \) laser beam.

The 2.5-mm diameter electron beam is produced by an \(\approx 1000 \)°C oxide cathode, yielding an energy width of 2.8-3.5 eV. However, the beam passes through a field \(\approx 5 \)-G magnetic field, and the residual energy width is \(\approx 0.3 \) eV. A collimated beam of sodium atoms is prepared by state-selecting the state \(m_\cdot = \frac{1}{2} \), \(m_L = \frac{1}{2} \) in a supersonic stream and pass through a field \(\approx 5 \)-G magnetic field, and the residual energy width is \(\approx 0.3 \) eV. A collimated beam of sodium atoms is prepared by state-selecting the state \(m_\cdot = \frac{1}{2} \), \(m_L = \frac{1}{2} \) in a supersonic stream and pass through a field \(\approx 5 \)-G magnetic field, and the residual energy width is \(\approx 0.3 \) eV.

FIG. 1. Na atoms are excited from 3S1/2(\(m_\cdot = \frac{1}{2} \)) to the Zeeman-split \(m_J \) levels of the 3P3/2 state, and the relative populations in these levels are probed by tuning a laser to excite from 3P3/2 to 5S1/2 and observing the resultant 4P cascade fluorescence.
\(\sim 0.3 \text{ eV} \). The electrons are gradually drawn out by several accelerating plates to minimize transverse electric fields that could induce spiraling. The current \((\lesssim 3 \text{ } \mu \text{A}) \) is space-charge limited at the cathode and kept low enough for space-charge depression of the electron energy to be \(\lesssim 0.1 \text{ eV} \).

About 20% of the 330-nm 4P cascade fluorescence is reflected by a spherical mirror into a quartz lens, and then into a bialkali-metal photomultiplier. Glass filters block the (590 nm) 3P fluorescence and transmit the (330 nm) 4P fluorescence. The signals are collected by a data acquisition system, which in turn is interfaced to a microcomputer which processes the data.

The optical pumping is performed in a weak magnetic field using circularly-polarized \(v_2 \)-laser light (\(\sim 0.5 \text{ W/cm}^2 \)) tuned simultaneously to both hyperfine levels of the 3S\(_{1/2} \) state. This is done with first-order sidebands produced in a 886 MHz rf phase-modulated electrooptic crystal, so that the sidebands are approximately 1772 MHz apart. Pumping is carried out on the 3S-3P\(_{1/2} \) transitions in order that photons from 3P\(_{1/2} \) fluorescence in the optical pumping region will not excite the 3P\(_{3/2} \) state in the interaction region. In this experiment \(\sim 96\% \) of the population is optically pumped to 3S\(_{1/2}(m_S = \frac{1}{2}) \).

Radiation trapping could in principle affect our cross-section results, as photons emitted from electron-excited 3P\(_{3/2} \) states could excite another atom in its ground state to a different 3P\(_{3/2}(m_J) \) level. This would mimic electron excitation of this level, and lead to erroneous partial cross sections. However, after taking into account the narrow residual Doppler widths in the beam, the frequencies and polarization properties of the photons emitted and subsequently reabsorbed along directions where the atom beam has significant extent, and the fact that the 3P\(_{3/2}(m_J = -\frac{1}{2}) \) state cannot be excited by a dipole allowed transition from the 3S\((m_S = -\frac{1}{2}) \) state, we conclude that radiation trapping is not significant for the Na densities and beam widths used in this experiment.

As the \(v_2 \) laser is scanned, it excites four, resolved 3P\(_{3/2}-5S_{1/2} \) Zeeman transitions as shown in Fig. 2. The area under each peak is proportional to the electron-excited population in the corresponding \(m_J \) levels of 3P\(_{3/2} \), but the transition strengths for 3P\(_{3/2}-5S_{1/2} \) transitions originating from \(|m_J| = \frac{1}{2} \) differ from those starting from \(|m_J| = \frac{1}{2} \), so the proportionality constant is also different. In the limit of low \(v_2 \) laser power \((P) \), the probability that an atom electron-excited to \(|m_J| = \frac{1}{2} \) emits a 4P-state fluorescence photon is three times that of an atom excited to \(|m_J| = \frac{3}{2} \), i.e., proportional to the ratio of transition strengths for 3P\(_{3/2}(|m_J|)-5S_{1/2}(m_S^\text{g}) \) transitions. However, an optical pumping process out of the 3P\(_{3/2}(m_J) \) state makes this ratio approximately unity in the high-power limit for \(v_2 \) on-resonance. The full power dependence for each \(|m_J| \) has been calculated, studied experimentally, and used to adjust the measured area ratios. The \(v_2 \) beam intensity is typically \(\sim 0.7 \text{ W/cm}^2 \).

To obtain the 3S\(_{1/2}(m_S^\text{g})\)-3P\(_{3/2}(m_J) \) excitation cross sections, a correction is made for the imperfect 3S state spin selection. The \(\sim 4\% \) of the beam in the 3S\((m_S = -\frac{1}{2}) \) state has the effect of increasing the apparent populations in the \(m_J = \frac{1}{2} \), \(-\frac{1}{2} \), and \(\frac{3}{2} \) states by typically 1%, 2.5%, and 0.5%, respectively.

These cross sections for electron excitation directly to 3P at energies above the (3.2 eV) 4S threshold must also be corrected for the cascade contributions from 4S. The extent to which this augments each 3P\(_{3/2}(m_J) \) population depends upon the cross sections for direct and exchange excitation from the 3S to 4S state. Mitroy\(^4\) has recently calculated the 3S-4S cross sections using a four-state close-coupling calculation, and from his values, about 30% of the 3S\((m_S = \frac{1}{2}) \) \(\rightarrow \) 3P\(_{3/2}(m_J = \frac{3}{2}) \) cross section at 335 eV arises from 4S cascading. The other three 3S\((m_S = \frac{1}{2}) \) \(\rightarrow \) 3P\(_{3/2}(m_J) \) cross sections at the same energy are much larger and have contributions of less than 4% due to 4S cascading.

Each of the 3P\(_{3/2}(m_J) \) levels is a linear combination of \(m_S \) and \(m_L \) states, as shown in Fig. 4. (For clarity in this figure we show the 3P\(_{3/2} \) states for full I-J decoupling; the \(\sim 1\% \) deviation from this at 220 G is taken into account in
the data reduction.) The cross sections for excitation to these \(m_S \) and \(m_L \) states is given by \(Q_{m_S m_L} \), where \(\Delta m_S = m_S - m_S' \) and \(\Delta m_L = m_L - m_L' \) each can be 0, 1, or -1, giving nine possible such \(Q \)'s. However, by symmetry, a change in the sign of both \(\Delta m_S \) and \(\Delta m_L \) will not change \(Q \), and in the absence of an explicit spin-dependent force, a change in the sign of either \(\Delta m_S \) or \(\Delta m_L \) will not change \(Q \). Consequently, there are only four independent \(Q \), corresponding to \(|\Delta m_S| = 1 \) or 0 and \(|\Delta m_L| = 1 \) or 0, which we label \(Q_{|\Delta m_S|=1} \). Cross sections for excitation to a particular \(m_J \) are given by

\[
Q(3S, m_J' \rightarrow 3P_{J'}, m_J) = \sum_{m_S, m_L} |C(J, m_J; m_S, m_L)|^2 Q_{|\Delta m_S|=1},
\]

where \(C(J, m_J; m_S, m_L) \) is the appropriate Clebsch-Gordan coefficient. Thus the \(Q_{|\Delta m_S|=1} \) are easily obtained from the data, and the results are presented in this form.\(^5\)

The measured partial cross sections (uncorrected for 4S cascade and electron spiraling effects) have been normalized so that their sum (\(Q_{\text{tot}} = Q_0^0 + Q_1^0 + 2Q_1^1 + 2Q_1^1 \)) agrees with the total cross-section data of several workers.\(^6\) The resulting absolute partial cross sections are presented in Fig. 5, along with the same cross sections deduced from the four-state close-coupling calculations of Moores and Norcross.\(^7\)

Electron spiraling can affect the observed partial cross sections, as the electron-atom collision does not occur along the quantization axis defined by the \(B \) field. For our low-energy data, this has the effect of increasing the apparent ratio of the cross sections with \(|\Delta m_J| = 1 \) compared to that with \(\Delta m_J = 0 \). By minimizing the ratio of \(3P - 3S \) fluorescence with polarization perpendicular versus parallel to the magnetic field direction, we determine the electron gun voltages that produce the minimum degree of spiraling. Voltage changes on the various accelerating elements of > 10% from this optimum condition have no effect on the polarization ratio, indicating that a true minimum, limited only by the transverse thermal energy, has been achieved. This minimum spiraling condition occurs when the electrons are drawn out with a nearly constant electric field, as expected.

By comparing our measured ratio of \(|\Delta m_J| = 1 \) vs \(\Delta m_J = 0 \) excitation to that inferred from the polarization measurements of Enemark and Gallagher,\(^8\) we estimate that spiraling effects are largest for the data within \(\frac{1}{2} \) eV of threshold. For instance, this comparison suggests that spiraling accounts for \(\sim 30 \% \) of the \(Q_1^0 \) and \(\sim 8 \% \) of the \(Q_1^0 \) reported at 2.55 eV in Fig. 5.

The four quantities obtained in this experiment, after normalization to previous total cross-section measurements, are the angle-integrated \(Q_{|\Delta m_S|=1} \) cross sections \(Q_0^0, Q_1^0, Q_1^1, \) and \(Q_1^1 \), as a function of energy.\(^9\) The \(|\Delta m_S| = 1 \) collisions take place via electron-spin exchange rather than direct spin flip, as the spin-orbit interaction responsible for spin flip is very weak in sodium, and is negligible compared to exchange at the low energies of this experiment. In the absence of electron-spin exchange, one would obtain \(Q_0^0/Q_0^0 = 0 \) and \(Q_1^1/Q_1^0 = 0 \). In fact, we typically measured \(Q_0^0/Q_0^0 = 0.35 \) and \(Q_1^1/Q_1^0 = 0.1 \), indicating that exchange plays a significant role in the excitation process.

Our data are in good agreement with the close-coupling calculation of Moores and Norcross\(^7\) for the largest component, \(Q_0^0 \), as well as with \(Q_1^0 \) at all but the near-threshold point. There is \(\sim 30 \% \) discrepancy for \(Q_1^1 \) except at this same near-threshold value. Here the \(\sim 0.3 \) eV electron-energy width may account for most of the unusu-
ally large disagreement at 2.35 eV, where the theoretical calculations indicate a rapidly increasing \(Q^1 \) cross section; i.e., this electron-energy spread, combined with the rapidly increasing \(Q^1 \), shifts the effective electron energy to a higher value. \(Q^1 \), on the other hand, agrees with the theory in the near-threshold region but differs by more than a factor of 2 at the higher measured energies. A detailed error analysis was not performed on our data, but it is clear from Fig. 5 that the random uncertainties are not excessively large, and we do not believe that electron spiraling, cascading, or any other systematic error is sufficient to explain these discrepancies.

In conclusion, a novel method has been used to measure the angle-integrated \(\Delta m_S \) and \(\Delta m_L \) dependences for electron excitation of the 3P state of sodium, at various electron energies between the 3P and 4P thresholds. We have demonstrated that this method can give an excellent signal-to-noise ratio even in the difficult threshold energy region. Significant discrepancies with the most complete published theory for the Na 3S-3P excitation \(Q^1 \) cross section have been found, indicating amongst other things that the exchange interaction plays a larger role than indicated by this calculation.

It is important to note that application of this basic technique is not restricted to sodium or to short-lived excited states; in principle it can be applied to any atom to determine the partial cross sections for impact excitation. Of course, in practice one is often limited by higher-level cascades and unfavorable radiative branchings, as well as practical problems such as laser sources in the necessary spectral region and the necessity to produce, pump and polarize the atomic beam.

We would like to thank Jim Mitroy for providing us with prepublication results. This work is supported by Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, U.S. Department of Energy.

\[\text{References} \]

4. J. Mitroy (private communication).
5. Electron collisions do not easily change \(m_L \), so we do not consider \(m_L \) changes in our discussion. This hypothesis was put forward in I. C. Percival and M. J. Seaton, Philos. Trans. R. Soc. London, Ser. A 251, 113 (1958).
9. In terms of \(f_{\Delta m_L} (\theta) \) and \(g_{\Delta m_L} (\theta) \), the amplitudes for 3S-3P direct and exchange excitation with \(|\Delta m_L| \), the partial cross sections may be written as [see J. Kessler, Polarized Electrons, 2nd ed. (Springer-Verlag, Berlin, 1985)]:

\[Q^0 = \frac{1}{2} \left(\frac{k_f}{k_i} \right) \int \left| f_{\theta} (\theta) \right|^2 + \left| f_{\theta} (\theta) - g_{\theta} (\theta) \right|^2 d\Omega, \]

\[Q^1 = \frac{1}{2} \left(\frac{k_f}{k_i} \right) \int \left| g_{\theta} (\theta) \right|^2 d\Omega, \]

\[Q^\prime = \frac{1}{2} \left(\frac{k_f}{k_i} \right) \int \left(\left| f_{\theta} (\theta) - g_{\theta} (\theta) \right|^2 + \left| f_{\theta} (\theta) \right|^2 \right) d\Omega, \]

\[Q^\prime = \frac{1}{2} \left(\frac{k_f}{k_i} \right) \int \left| g_{\theta} (\theta) \right|^2 d\Omega, \]

where \(k_f \) and \(k_i \) are the final and initial electron momenta, respectively, and the factor of \(\frac{1}{2} \) arises since the electron beam is initially unpolarized.