In the May 1978 Kickshaws, I pointed out that five-letter words still have unexplored logological aspects. For example, I showed that all 130 possible combinations of each alphabetical letter in each position exist as words, nearly all common enough to be in the Pocket Webster.

The next plateau is to consider two letters at a time. I still retain the condition that the required letters may not be repeated elsewhere in the word. There are now 13,000 words required, and a full listing would bore the reader. To demonstrate the concept, I exhibit below the first and last of 130 subsets: 100 words containing A in the first position and another letter in each of the remaining positions, and 100 words containing Z in the last position and another letter in each of the remaining positions.

For the A---- subset, the vast majority are common words. Those not in Webster's Collegiate are coded in the priority order *(Webster's Third), § (Random House Unabridged), # (Webster's Second), and $ (Oxford English Dictionary). Capitalized or usually capitalized words are underlined.

```
ABOUT ACONN ADDOS AGEIS AFEIR AGENT AHIRN*
ALBUM ASCOT AIDER AGENT AWFUL AEGIS ACHED
ALBZ AMUCK ABODE ASTER ALOFT ALLGN AUGHT
ACERB ANTIC ALKYD ALLVE ALOOF ALONG ALEPH
ALDES AJMER* AKEBI* ALBUM AMPLE ANGEL AOTES*
ABIDE ANJOU$ ASED ABER ALMED ACNES ABODE
AERJE AGOJO* AIIKE ADDLE ALUMS AEONS ABOOT
APODL* A---J AMUCK AFOUU ALUM AMOR AMIGO
APHID AQOY$ ARGUE ASCOET ATOIL AUGHT AVOID
AMPLE AEQUI* ACRID AISLE ACTOR ACUTE ANVIL
ADEPT A---Q ABORT ABUSE ABUTS ABOUT ABOVE
ADROP* A---Q ADDER ADIOS AFOUT ADILE A-V
AWFUL AXIOM AYINS AZURE
A1WAY AUXIN AYESS AZEES
AVOWS AZOXY* AKYD AMUZE
ALLOW AFFIX ALLY ARROZ*
```

The ----Z subset, as expected, is not only highly incomplete but replete with uncommon words, including many capitalized.
One then asks if there exists any subset which is complete. The answer is "no"; for the only five-letter word ending in J known to me is SAMAJ -- a no-no for letters other than initial S, third M, and final J. These quickly cause impossibilities for words ending in V or Q other than STRUV, which itself leads to many problems.

Since each word occurs in two subsets (for example, ArroZ in the A---- and ----Z subsets), only 6500 different words need to be found. Actually, one can get by with far fewer, but the theoretical minimum is not known.

The second subset, with A in the second position, qualifies as the best; I believe it is unique in having only two blanks and no capitals.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td>A</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>D</td>
<td>O</td>
<td>Z</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
<td>I</td>
<td>E</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>C</td>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>D</td>
<td>O</td>
<td>Z</td>
</tr>
</tbody>
</table>

words still that all position Webster.

still retain somewhere in listing that below the first and in each words. Those Web- Second, capitalized

This is just an example of the kind of search that can be done. The key is to look for patterns and to use a computer program to do the work automatically.