Multiple protein-DNA interactions over the yeast HSC82 heat shock gene promoter

Document Type

Article

Publication Date

1995

Publication Title

Nucleic Acids Research

First Page

1822

Last Page

1829

DOI

http://dx.doi.org/10.1093/nar/23.10.1822

Abstract

We have utilized DNase I and micrococcal nuclease (MNase) to map the chromatin structure of the HSC82 heat shock gene of Saccharomyces cerevisiae. The gene is expressed at a high basal level which is enhanced 2-3-fold by thermal stress. A single, heat-shock invariant DNase I hypersensitive domain is found within the HSC82 chromosomal locus; it maps to the gene's 5' end and spans 250 bp of promoter sequence. DNase I genomic footprinting reveals that within this hypersensitive region are four constitutive protein-DNA interactions. These map to the transcription initiation site, the TATA box, the promoter-distal heat shock element (HSE1) and a consensus GRF2 (REB1/Factor Y) sequence. However, two other potential regulatory sites, the promoter-proximal heat shock element (HSE0) and a consensus upstream repressor sequence (URS1), are not detectably occupied under either transcriptional state. In contrast to its sensitivity to DNAase I, the nucleosome-free promoter region is relatively protected from MNase; the enzyme excises a stable nucleoprotein fragment of approximately 210 bp. As detected by MNase, there are at least two sequence-positioned nucleosomes arrayed 5' of the promoter; regularly spaced nucleosomes exhibiting an average repeat length of 160-170 bp span several kilobases of both upstream and downstream regions. Similarly, the body of the gene, which exhibits heightened sensitivity to DNase I, displays a nucleosomal organization under both basal and induced states, but these nucleosomes are not detectably positioned with respect to the underlying DNA sequence and may be irregularly spaced and/or structurally altered. We present a model of the chromatin structure of HSC82 and compare it to one previously derived for the closely related, but differentially regulated, HSP82 heat shock gene.

Rights

Link leads to full text provided by Oxford University Press.

Share

COinS