Date of Award

2019

Degree Type

Thesis

Degree Name

Honors Thesis

Department

Mathematics

First Advisor

Rasitha Jayasekare

Abstract

Multi-class classification models are used to predict categorical response variables with more than two possible outcomes. A collection of multi-class classification techniques such as Multinomial Logistic Regression, Na\"{i}ve Bayes, and Support Vector Machine is used in predicting patients’ drug reactions and adverse drug effects based on patients’ demographic and drug administration. The newly released 2018 data on drug reactions and adverse drug effects from U.S. Food and Drug Administration are tested with the models. The applicability of model evaluation measures such as sensitivity, specificity and prediction accuracy in multi-class settings, are also discussed.

Included in

Mathematics Commons

Share

COinS