Document Type
Article
Publication Date
2014
Publication Title
Applied Environmental Microbiology
First Page
3103
Last Page
3112
DOI
http://dx.doi.org/10.1128/AEM.04034-13
Abstract
Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.
Rights
This article was archived with permission from American Society for Microbiology, all rights reserved. Document also available from Applied and Environmental Microbiology.
Recommended Citation
Berthrong, Sean T.; Yeager, Chris M.; Gallegos-Graves, Laverne; Steven, Blaire; Eichorst, Stephanie A.; Jackson, Robert B.; and Kuske, Cheryl R., "Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities than Elevated Atmospheric CO2" Applied Environmental Microbiology / (2014): 3103-3112.
Available at https://digitalcommons.butler.edu/facsch_papers/873